Biotech Breakthrough: Fully-Functioning Organ Grown

artificial-thymusOrgan transplants are one of the greatest medical advances of the 20th century. Where patients once faced disability or even death, they’ve been given a new lease on life in the form of donated organs. The problem is that the supply of suitable donor organs has always been in a state of severe shortage. Not only is it entirely dependent on accident victims who have signed their organ donor card, there is also the issue of genetic suitability.

For decades, scientists have worked on producing lab-grown organs to pick up the slack left by the donor system. The research has yielded some positive results in the form of simple organs, such as the artificial esophagus and “mini-kidneys.” Nevertheless, the creation of whole, complex, functional organs that can be swapped for damaged or destroyed ones has remained out of reach. That is, until now.

fibroblastScientists at the University of Edinburgh have grown a fully-functional organ inside a mouse, a breakthrough that opens up the possibility of one day manufacturing compatible organs for transplant without the need for donors. Using mouse embryo cells, scientists at the MRC Centre for Regenerative Medicine created an artificial thymus gland with the same structure and function as an adult organ.

The University of Edinburgh team produced the artificial thymus gland using a technique that the scientists call “reprogramming.” It involves fibroblast cells, which form connective tissue in animals, being removed from a mouse embryo and then treated with a protein called FOXN1 to change them into thymic epithelial cells (TEC). These were then mixed with other thymus cells and transplanted into living mice by grafting them to the animal’s kidneys.

T-cellThen, over a period of four weeks, the cells grew into a complete, functioning thymus gland that can produce T cells – an important part of the immune system. According to the scientists, this development goes beyond previous efforts because the thymus serves such a key part in protecting the body against infection and in eliminating cancer cells. This is clearly the first step on the road towards complete organ development.

The team is currently working on refining the reprogramming technique in the hope of developing a practical medical procedure, such as creating bespoke thymus glands made to match a patient’s own T cells. They see the development of a lab-grown thymus as a way of treating cancer patients whose immune system has been compromised by radiation or chemotherapy, and children born with malfunctioning thymuses.

bioprintingAccording to Rob Buckle, Head of Regenerative Medicine at the MRC, the potential is tremendous and far-reaching:

Growing ‘replacement parts’ for damaged tissue could remove the need to transplant whole organs from one person to another, which has many drawbacks – not least a critical lack of donors. This research is an exciting early step towards that goal, and a convincing demonstration of the potential power of direct reprogramming technology, by which one cell type is converted to another. However, much more work will be needed before this process can be reproduced in the lab environment, and in a safe and tightly controlled way suitable for use in humans.

Combined with “bioprinting” – where stem cells are printed into organs using a 3-D printer – organs transplants could very well evolve to the point where made-to-order replacements are fashioned from patient’s own genetic material. This would not only ensure that there is never any shortages or waiting lists, but that there would be no chance of incompatibility or donor rejection.

Another step on the road to clinical immortality! And be sure to check out this video of the artificial thymus gland being grown, courtesy of the Medical Research Council:


Source:
gizmag.com, crm.ed.ca.uk

Biomedical Breakthroughs: Vascular Network Bioprinting

bioprintingThe ability to generate biological tissues using 3-D printing methods – aka. “bioprinting” – may one day help medical researchers and hospitals to create artificial, on-demand custom body parts and organs for patients. And numerous recent advancements – such as the creation of miniature kidneys, livers, and stem cell structures – are bringing that possibility closer to reality.

And now, according to a new study produced by researchers from the University of Sydney, it is now possible to bioprint artificial vascular networks that mimic the body’s circulatory system. Being able to bio-print an artificial vascular network would give us the ability to keep tissue and organs alive where previously it would not have been possible. The body’s vascular network enables it to transport blood and, therefore, oxygen and nutrients, to tissues and organs.

vascularIt also provides a means of transporting waste materials away from tissues and organs. Dr. Luiz Bertassoni. the lead author of the study explained:

Cells die without an adequate blood supply because blood supplies oxygen that’s necessary for cells to grow and perform a range of functions in the body. To illustrate the scale and complexity of the bio-engineering challenge we face, consider that every cell in the body is just a hair’s width from a supply of oxygenated blood. Replicating the complexity of these networks has been a stumbling block preventing tissue engineering from becoming a real world clinical application.

In order to solve this problem, the researchers used a bioprinter to create a framework of tiny interconnected fibers to serve as a mold. The structure was then covered with a “cell-rich protein-based material” and solidified using light. The fibers were removed to leave a network of tiny channels that formed into stable human blood-capillaries within just a week’s time.

stem_cells3According to the University of Sydney study, the technique demonstrated better cell survival, differentiation and proliferation compared to cells that received no nutrient supply. In addition, it provides the ability to create large, life-supporting three-dimensional, micro-vascular channels quickly and with the precision required for application to different individuals.

This is a major step forward for the bioprinting industry, according to Bertassoni:

While recreating little parts of tissues in the lab is something that we have already been able to do, the possibility of printing three-dimensional tissues with functional blood capillaries in the blink of an eye is a game changer.

bioprinter1In addition, Bertassoni claims that the ultimate aim of the research is for patients to be able to walk into a hospital and have a full organ printed with all the cells, proteins and blood vessels in the right place:

We are still far away from that, but our research is addressing exactly that. Our finding is an important new step towards achieving these goals. At the moment, we are pretty much printing ‘prototypes’ that, as we improve, will eventually be used to change the way we treat patients worldwide.

Bioprinting that uses a patient’s own DNA to generate custom-made organs and tissues offers a world of medical possibilities in which organ donors are no longer necessary, and the risk of rejection and incompatibility is negligible. Not only that, it will usher in a world where no injury is permanent and prosthetics are a thins of the past.

Sources: gizmag.com, sydney.edu.au