3-D Printing Martian and Lunar Housing

3dprinted_moon_base1For enthusiasts of 3-D printing and its many possibilities, a man like Berokh Khoshnevis needs no introduction. As for the rest of us, he is the USC’s Director of Manufacturing Engineering, and has spent the last decade working on a new direction for this emerging technology. Back in 2012, he gave a lecture at TEDxTalks where he proposed that automated printing and custom software could revolutionize construction as we know it.

Intrinsic to this vision are a number of technologies that have emerged in recent years. These include Computer-Assisted Design/Computer-Assisted Manufacturing (CAD/CAM), robotics, and “contour crafting” (i.e. automated construction). By combining design software with a large, crane-sized 3-D printing machine, Khoshnevis proposes a process where homes can be built in just 20 hours.

contour-craftingKhoshnevis started working on the idea when he realized the gigantic opportunity in introducing more speed and affordability into construction. All of the technology was already in place, all that was required was to custom make the hardware and software to carry it all out. Since that time, he and his staff have worked tirelessly to perfect the process and vary up the materials used.

Working through USC’s Center for Rapid Automated Fabrication Technologies, Khoshnevis and his students have made major progress with their designs and prototypes. His robotic construction system has now printed entire six-foot tall sections of homes in his lab, using concrete, gypsum, wood chips, and epoxy, to create layered walls sections of floor.

3dprinted_moon_base3The system uses robotic arms and extrusion nozzles that are controlled by a computerized gantry system which moves a nozzle back and forth. Cement, or other desired materials, are placed down layer by layer to form different sections of the structure. Though the range of applications are currently limited to things like emergency and temporary shelters, Khoshnevis thinks it will someday be able to build a 2,500-square-foot home in 20 hours.

As he describes the process:

It’s the last frontier of automation. Everything else is made by machines except buildings. Your shoes, your car, your appliances. You don’t have to buy anything that is made by hand.

contour-crafting2As Khoshnevis explained during his 2012 lecture at TEDx, the greatest intended market for this technology is housing construction in the developing world. In such places of the world, this low-cost method of creating housing could lead to the elimination of slums as well as all the unhealthy conditions and socioeconomic baggage that comes with them.

But in the developed world, he also envisions how contour crafting machines could allow homes to be built more cheaply by reducing labor and material costs. As he pointed out in his lecture, construction is one of the most inefficient, dirty and dangerous industries there is, more so than even mining and oil drilling. Given a method that wastes far less material and uses less energy, this would reduce our impact on the natural environment.

3dprinted_moon_base2But of course, what would this all be without some serious, science fiction-like applications? For some time now, NASA and the ESA has been looking at additive manufacturing and robotics to create extra-terrestrial settlement. Looking farther afield, NASA has given Khoshnevis a grant to work on building lunar structures on the moon or other planets that humans could one day colonize.

According to NASA’s website, the construction project would involve:

Elements suggested to be built and tested include landing pads and aprons, roads, blast walls and shade walls, thermal and micrometeorite protection shields and dust-free platforms as well as other structures and objects utilizing the well known in-situ-resource utilization (ISRU) strategy.

3dprinted_moon_baseMany existing technologies would also be employed, such as the Lunar Electric Rover, the unpressurized Chariot rover, the versatile light-weight crane and Tri-Athlete cargo transporter as well some new concepts that are currently in testing. These include some habitat mockups and new generations of spacesuits that are currently undergoing tests at NASA’s Desert Research And Technological Studies (D-RATS).

Many of the details of this arrangement are shrouded in secrecy, but I think I can imagine what would be involved. Basically, the current research and development paradigm is focusing on combining additive manufacturing and sintering technology, using microwaves to turn powder into molten material, which then hardens as it is printed out.

sinterhab3To give you an idea of what they would look like, picture a crane-like robot taking in Moon regolith or Martian dust, bombarding it with microwaves to create a hot glue-like material, and then printing it out, layer by layer, to create contoured modules as hard as ceramic. These modules, once complete, would be pressurized and have multiple sections – for research, storage, recreation, and whatever else the colonists plan on getting up to.

Pretty cool huh? Extra-terrestrial colonies, and a cheaper, safer, and more environmentally friendly construction industry here on Earth. Not a bad way to step into the future! And in the meantime, be sure to enjoy this video of contour crafting at work, courtesy of USC’s Center for Rapid Automated Fabrication Technologies:

fastcoexist.com, nasa.gov

Ending World Hunger: Insect-Based “Power Flour”

insect_flourIt has long been understood that if we, as a species, are going to deal with overpopulation and hunger, we need take a serious look at our current methods of food production. Not only are a good many of our practices unsustainable – monoculture, ranching, and overuse of chemical fertilizers being foremost amongst them – it is fast becoming clear that alternatives exist that are more environmentally friendly and more nutritious.

However, embracing a lot of these alternatives means rethinking our attitudes to what constitutes food. All told, there are millions of available sources of protein and carbohydrates that aren’t being considered simply because they seem unappetizing or unconventional. Luckily, researchers are working hard to find ways to tackle this problem and utilize these new sources of nutrition.

HULT-PRIZE-large570One such group is a team of McGill University MBA students who started the Aspire Food Group, an organization that will produce nutritious insect-based food products that will be accessible year-round to some of the world’s poorest city dwellers. Recently, this group won the $1 million Hult Prize for the development of an insect-infused flour that offers all the benefits of red meat – high protein and iron – but at a fraction of the cost.

The team – which consists of Mohammed Ashour, Shobhita Soor, Jesse Pearlstein, Zev Thompson and Gabe Mott – were presented with the social entrepreneurship award and $1 million in seed capital back in late September. The presentation was made by former U.S. president Bill Clinton in New York City at the Clinton Global Initiative’s annual meeting.

world_hungerThe Hult Prize Foundation runs an annual contest open to teams of four or five students from colleges and universities from around the world. Their task is to develop ideas for social enterprises – organizations that use market-based strategies to tackle social or environmental problems. This year’s challenge, selected by Clinton, was to tackle world hunger.

Over 10,000 students entered, and the McGill team was one of six which reached the final stage, where they pitched their idea Monday to judges that included Clinton, Nobel Peace Prize laureate Muhammad Yunus and Erathrin Cousin, CEO of the World Food Program. The $1 million was provided by the family of the Swedish billionaire Bertil Hult, who made his fortune with the venerable EF Education First company.

insect_flour1Mohammed Ashour explained the process behind the insect flour in an interview to CBC News:

We are farming insects and we’re grinding them into a fine powder and then we’re mixing it with locally appropriate flour to create what we call power flour. It is essentially flour that is fortified with protein and iron obtained from locally appropriate insects.

What is especially noteworthy about the product, aside from its sustainability, is the fact that it delivers plenty of protein and iron in an inexpensive package. These nutrients, the team noted, are in short supply in the diets of many people in developing nations, but can be found in high amounts in insects. For example, they note, crickets have a higher protein content per weight than beef.

???????????????????????????????And while the idea of eating insects might seem unappealing to many people living in the developed world, Soor pointed out that people in many of the countries they are targeting already eat insects. In addition, the type of insect used to produce the flour for a local market would be chosen based on local culinary preferences. As she put it:

There really isn’t a ‘yuck’ factor. For example, in Mexico, we’d go with the grasshopper. In Ghana, we’d go with the palm weevil.

The insects would also be mixed with the most common type of local flour, whether it be made from corn, cassava, wheat or something else. Thus, the product would not only provide nutrition, but would be locally sourced to ensure that it is accessible and beneficial to the local market.

Developed-and-developing-countriesIn addition, the team has already held taste tests in some markets. In one test, they offered people tortillas made from regular corn flour, corn flour containing 10 per cent cricket flour and corn flour containing 30 per cent cricket flour. As Ashour indicated, the reviews were met with approval:

Amazingly enough, we got raving reviews for the latter two… so it turns out that people either find it to be tasting neutral or even better than products that are made with traditional corn flour.

The team hopes to use the prize money to help them expand the reach of their organization to the over 20 million people living in urban slums around the world by 2018. And I can easily foresee how flours like this one could become a viable item when teamed up with 3D food printers, tailoring edible products that meet our nutritional needs without putting undue strain on the local environment.

And be sure to enjoy this video of the McGill students and their prize-winning flour, courtesy of CBC news:

Source: cbc.ca