The Future of Medicine: The “Human Body-on-a-Chip”

bodyonachip One of the aims of modern medicine is perfecting the way we tests treatments and drugs, so that the lengthy guess-work and clinical trials can be shortened or even cut out of the equation. While this would not only ensure the speedier delivery of drugs to market, it would also eliminate the need for animal testing, something which has become increasingly common and controversial in recent years.

Over the last century, animal testing has expanded from biomedical research to included things like drug, chemical, and cosmetic testing. One 2008 study conducted by The Guardian estimated that 115 million animals are used a year for scientific research alone. It is therefore no surprise that opposition is growing, and that researchers, regulators and even military developers are looking for more accurate, efficient, and cruelty-free alternatives.

bodyonachip1Enter the National Insitute of Health in Besthesda, Maryland; where researchers have teamed up with the FDA and even DARPA to produce a major alternative. Known as the “Human Body-on-a Chip”, this device is similar to other “Organs-on-a-chip” in that it is basically a small, flexible pieces of plastic with hollow micro-fluidic channels lined with human cells that can mimic human systems far more effectively than simple petri dish cell cultures.

Dan Tagle, the associate director of the NIH’s National Center for Advancing Translational Sciences, explained the benefits of this technology as follows:

If our goal is to create better drugs, in a way that is much more efficient, time and cost-wise, I think it’s almost inevitable that we will have to either minimize or do away with animal testing.

https://i0.wp.com/images.medicaldaily.com/sites/medicaldaily.com/files/styles/large/public/2014/03/18/new-technology-may-obviate-need-animal-testing.jpgWhat’s more, chips like this one could do away with animal testing entirely, which is not only good news for animals and activists, but drug companies themselves. As it stands, pharmaceutical companies have hit a wall in developing new drugs, with roughly 90% failing in human clinical trials based on safety and effectiveness. One reason for this high rate of failure is that drugs that first seem promising in rodents often don’t have the same response in people.

In fact, so-called “animal models” are only typically 30% to 60% predictive of human responses, and there are potentially life-saving drug therapies that never make it to human clinical trials because they’re toxic to mice. In these cases, there’s no way to measure the lost opportunity when animals predict the wrong response. And all told, it takes an average of 14 years and often billions of dollars to actually deliver a new drug to the market.

bodyonachip2According to Geraldine Hamilton, a senior staff scientist at Harvard University’s Wyss Institute for Biologically Inspired Engineering, it all began five years ago with the “lung-on-a-chip”:

We’ve also got the lung, gut, liver and kidney. We’re working on skin. The goal is really to do the whole human body, and then we can fluidically link multiple chips to capture interactions between different organs and eventually recreate a body on a chip.

This has led to further developments in the technology, and Hamilton is now launching a new startup company to bring it to the commercial market. Emulate, the new startup that will license Wyss’s technology, isn’t looking to literally create a human body but rather to represent its “essential functions” and develop a platform that’s easy for all scientists and doctors to use, says Hamilton, who will become Emulate’s president and chief scientific officer.

lung-on-a-chip-5Borrowing microfabrication techniques from the semiconductor industry, each organ-on-a-chip is built with small features – such as channels, vessels, and flexible membranes – designed to recreate the flow and forces that cells experience inside a human body. All that’s needed are different chips with different culture of human cells; then researchers can performed tests to see how drugs work in one region of the body before being metabolized by the liver.

This might one day help the military to test treatments for biological or chemical weapons, a process that is unethical (and illegal) with humans, and cruel and often inaccurate with animals. Hospitals may also be able to use a patient’s own stem cells to develop and test “personalized” treatments for their disease, and drug companies could more quickly screen promising new drugs to see if they are effective and what (if any) side effects they have on the body’s organs.

It’s a process that promises speedier tests, quicker delivery, a more cost-effective medical system, and the elimination of cruel and often inaccurate animal testing. Can you say win-win-win?

Source: fastcoexist.com, ncats.nih.gov, wyss.harvard.edu, theguardian.com

The Future is Here: Cancer Drug Developed by AI

AI'sThe development of cancer drugs is a costly, expensive, time-consuming process that has a high probability rate of failure. On average, it takes 24 to 48 months to find a suitable candidate and costs upwards of $100 million. And in the end, roughly 95% of all potential drugs fail in clinical trials. Because of this, scientists are understandably looking for a way to speed up the discovery process.

That’s where the anti-cancer drug known as BPM 31510 comes in play. Unlike most pharmaceuticals, it was developed by artificial intelligence instead of a group of researchers toiling away in a lab. Created by biotech company Berg (named after real estate billionaire Carl Berg) the company seeks to use artificial intelligence to design cancer drugs that are cheaper, have fewer side effects, and can be developed in half the time it normally takes.

drugsTowards this end, they are looking to data-driven methods of drug discovery. Instead of generating cancer drugs based on chemical compounds identified in labs, the company compares tissue, urine, and blood samples from cancer patients and healthy patients, generating tens of trillions of data points that are fed into an artificial intelligence system. That system crunches all the data, looking for problems.

BPM 31510, which is the first of Berg’s drugs to get a real-world test, focuses on mitochondria – a framework within cells that’s responsible for programmed cell death. Normally, mitochondria triggers damaged cells to die. When cancer strikes, this process goes haywire, and the damaged cells spread. Berg’s drug, if successful, will be able to restore normal cell death processes by changing the metabolic environment within mitochondria.

MitochondriaSpeaking on the subject of the drug, which is now in human-clinical trials, Berg president and co-founder Niven Narain said:

BPM 31510 works by switching the fuel that cancer likes to operate on. Cancer cells prefer to operate in a less energy-efficient manner. Cancers with a high metabolic function, like triple negative breast cancer, glioblastoma, and colon cancer–that’s the sweet spot for this technology.

IBM is also leveraging artificial intelligence in the race to design better cancer treatments. In their case, this involves their much-heralded supercomputer Watson looking for better treatment options for patients. In a trial conducted with the New York Genome Center, Watson has been scanning mutations found in brain cancer patients, matching them with available treatments.

dna_cancerAll of these efforts are still in early days, and even on its accelerated timeline, BPM 31510 is still years away from winning an FDA approval. But, as Narain points out, the current drug discovery system desperately needs rethinking. With a success rate of 1 out of 20, their is definitely room for improvement. And a process that seeks to address cancer in a way that is more targeted, and more personalized is certainly in keeping with the most modern approaches to medicine.

Source: fastcoexist.com