Universe Today: Are Intelligent Civilizations Doomed?

Gaia_galaxyMy friend over at Universe Today, Fraser Cain, has been busy of late! In his latest podcast, he asks an all-important question that addresses the worrisome questions arising out of the Fermi Paradox. For those unfamiliar with this, the paradox states that given the age of the universe, the sheer number of stars and planets, and the statistical likelihood of some of the supporting life, how has humanity failed to find any indications of intelligent life elsewhere?

It’s a good question, and raised some frightening possibilities. First off, humanity may be alone in the universe, which is frightening enough prospect given its sheer size. Nothing worse than being on a massive playground and knowing you only have but yourself to play with. A second possibility is that extra-terrestrial life does exist, but has taken great pains to avoid being contacting us. An insulting, if understandable, proposition.

alien-worldThird, it could be that humanity alone has achieved the level of technical development necessary to send out and receive radio transmissions or construct satellites. That too is troubling, since it would means that despite the age of the universe, it took this long for an technologically advanced species to emerge, and that there are no species out there that we can learn from or look up to.

The fourth, and arguably most frightening possibility, is the Great Filter theory – that all intelligent life is doomed to destroy itself, and we haven’t heard from any others because they are all dead. This concept has been explored by numerous science fiction authors – such as Stephen Baxter (Manifold: Space), Alastair Reynolds (the Revelation Space universe) and Charles Stross (Accelerand0) – all of whom employ a different variation and answer.

kardashev_scaleAs explored by these and other authors, the biggest suggestions are that either civilizations will eventually create weapons or some kind of programmed matter which will destroy – such as nuclear weapons, planet busters, killer robots, or nanotech that goes haywire (aka. “grey goo”). A second possibility is that all species eventually undergo a technological/existential singularity where they shed their bodies and live out their lives in a simulated existence.

A third is that intelligent civilizations fell into a “success trap”, outgrowing their resources and their capacity to support their numbers, or simply ruined their planetary environment before they could get out into the universe. As usual, Fraser gives a great rundown on all of this, explaining the Fermi Paradox is, the statistical likelihood of life existing elsewhere, and what likely scenarios could explain why humanity has yet to find any proof of other civilizations.

Are Intelligent Civilizations Doomed:

And be sure to check out the podcast that deals strictly with the Fermi Paradox, from roughly a year ago:

The Fermi Paradox Explained:

Space Video: Could Jupiter Become a Star?

jupiterMy buddy and mentor in all things space and internet-related, Fraser Cain, has produced yet another informative video that I wish to share today. The subject in question is, “Could Jupiter Become a Star”? Naturally, this question has a wider context which needs to be understood if it is to make any sense. You see, for decades scientists have wondered whether or not a gas giant could be converted into a smaller version of own sun.

This is mainly due to the fact that gas giants and brown dwarves are very similar; in some cases, it’s even considered acceptable to say that a gas giant represents a failed star. This is not entirely accurate, since a gas giant does not have the necessary mass to trigger a deuterium reaction (aka. fusion) in order to create one. But, as Fraser points out, there are those who have wondered if an explosion – like that created by the Galileo space probe crashing into Jupiter – could cause a sun-birthing explosion.

sun_magneticfieldThis question has become relevant once again thanks to Cassini’s ongoing mission around Saturn. Thanks to the prevalence of noble (and flammable) gases that make up this planet as well, some worry that crashing a nuclear powered satellite into it will trigger a massive thermonuclear reaction. But, as Cain points out in a blow-by-blow manner, the answer to this question is a “series of nos”. Put simply, the raw materials and mass simply aren’t there.

Still, it’s a cool idea, and it was the focal point of Arthur C. Clarke’s 2001: A Space Odyssey and all subsequent novels in the series. In this seminal collection of classic sci-fi, we are told that an ancient race (the First Born) tampered with our evolution eons ago, thus giving rise to the hominid we see every time we look in the mirror. By 2001, when the story opens up, we see a space-faring humanity uncovering evidence of this face, in the form of a strange Monolith buried on the Moon.

2010_3After learning that this strange object is sending signals towards Jupiter, several missions are mounted which determined that these same extra-terrestrials are one again at work, this time in the outer Solar System. Believing there is life trapped underneath the heavy ice sheets of Europa, the First Born use their superior technology and know-how to convert Jupiter into a sun, which in turn melts Europa’s ice, giving rise to an atmosphere and letting the life out to flourish.

So while it’s sci-fi gold, its not exactly science. But then again, that’s the beauty of science fiction – you can always postulate that the means will exist somewhere down the road. But until such time as we can manipulate matter, download our consciousness into rectangular monoliths with perfect dimensions, and travel through the cosmos in said same objects, we’re going to have to get used to NOT looking up at night and seeing this:

2010_4In the meantime, enjoy the video. Like all Universe Today videos, articles and podcasts, it’s really quite informative. And be sure to subscribe if you like having all your questions about space, science and the answers to the big questions addressed:

Evidence for the Big Bang

planck-attnotated-580x372The Big Bang Theory has been the dominant cosmological model for over half a century. According to the theory, the universe was created approximately 14 billion years ago from an extremely hot, dense state and then began expanding rapidly. After the initial expansion, the Universe cooled and began to form various subatomic particles and basic elements. Giant clouds of these primordial elements later coalesced through gravity to form stars, galaxies, and eventually planets.

And while it has its detractors, most of whom subscribe to the alternate Steady State Theory – which claims that new matter is continuously created as the universe expands – it has come to represent the scientific consensus as to how the universe came to be. And as usual, my ol’ pal and mentor in all things digital, Fraser Cain, recently released a video with the help of Universe Today discussing the particulars of it.

big_bangAddressing the particulars of the Big Bang Theory, Cain lists the many contributions made over the past century that has led this so-called theory to become the scientific consensus has come to exist. They are, in a nutshell:

  1. Cosmic Expanion: In 1912, astronomer Vesto Slipher calculated the speed and distance of “spiral nebulae” (galaxies) by measuring the light coming from them. He determined most were moving away. In 1924, Edwin Hubble determined that these galaxies were outside the Milky Way. He postulates that the motion of galaxies away from our own indicates a common point of origin.
  2. Abundance of Elements: Immediately after the big bang, only hydrogen existed and compressed into a tiny area of space under incredible heat and pressure. Like a star, this turned hydrogen into helium and other basic elements. Looking out into the universe (and hence back in time) scientists have found that great distances, the ratios of hydrogen to basic elements is consistent with what is found in star’s interiors.
  3. Cosmic Microwave Background (CMB) Radiation: In the 1960’s, using a radiotelescope, Arno Penzias and Robert Wilson discovered a background radio emission coming from every direction in the sky, day or night. This was consistent with the Big Bang Theory, which predicted that after the Big Bang, there would have been a release of radiation which then expanded billions of light years in all directions and cooled to the point that it shifted to invisible, microwave radiation.
  4. Large Scale Structure: The formation of galaxies and the large-scale structure of the cosmos are very similar. This is consistent with belief that after the initial Big Bang, the matter created would have cooled and began to coalesce into large collections, which is what galaxies, local galactic groups, and super-clusters are.

These are the four pillars of the Big Bang Theory, but they are no means the only points in its favor. In addition, there are numerous observational clues, such as how we have yet to observe a stars in the universe older than 13 billion years old, and fluctuations in the CMB that indicate a lack of uniformity. On top of that, there is the ongoing research into the existence of Dark Matter and Dark Energy, which are sure to bear fruit in the near future if all goes well.

big_bang1In short, scientists have a pretty good idea of how the universe came to be and the evidence all seems to confirm it. And some mysteries remain, we can be relatively confident that ongoing experimentation and research will come up with new and creative ways to shed light on the final unknowns. Little reason then why the Big Bang Theory enjoys such widespread support, much like Evolution, Gravity, and General Relativity.

Be sure to check out the full video, and subscribe to Universe Today for additional informative videos, podcasts, and articles. As someone who used to write for them, I can tell you that it’s a pretty good time, and very enlightening!

News From Space: Volcanic Eruption on Io!

Io.1Io, the innermost of Jupiter’s four largest moons, has always been a source of wonder for astronomers and scientists. In addition to its pockmarked and ashen surface, it is the most volcanically active object in the Solar System, with about 240 active regions. This is due to the immense tidal forces that Jupiter provides, which create oceans of lava beneath the surface and huge volcanoes blasting it hundreds of kilometers into space.

Naturally, these eruptions are not visible directly from Earth unless one is using infrared cameras. But recently, a new series of eruptions were observed by Dr. Imke de Pater, Professor of Astronomy and of Earth and Planetary Science at the University of California in Berkeley. She was using the Keck II telescope on Mauna Kea in Hawaii on August 15, 2013 when it immediately became apparent something big was happening at Io.

Io_eruptionIn a telephone interview with Universe Today, de Pater claims this eruption is one of the top 10 most powerful eruptions that have been seen on Io, and she just happened to have the best seat in the house to observe it.

When you are right at the telescope and see the data, this is something you can see immediately, especially with a big eruption like that. It is a very energetic eruption that covers over a 30 square kilometer area. For Earth, that is big, and for Io it is very big too. It really is one of the biggest eruptions we have seen.

However, the fact that it occurred in the Rarog Patera region of Io, aptly named for a Czech fire deity, is somewhat unusual. While many regions of Io are volcanically active, de Pater said she’s not been able to find any other previous activity that has been reported in the Rarog Patera area, which the team finds very interesting.

Galileo_IoAccording to Ashley Davies of NASA’s Jet Propulsion Laboratory in Pasedena, California, Rarog Patera was identified as a small, relatively innocuous hot spot by the Galileo spacecraft during its encounter with the Jovian moon during the late 90’s. However, the observations made indicated that the volcanic activity was at a level way, way below what was seen on Aug 15.

Though we cannot see the eruptions directly, observation using the Keck telescope in the past have ascertained there are likely fountains of lava gushing from volcanically active fissures. But unlike volcanic eruptions here on Earth, which are already awesome and frightening to behold, eruptions on Io would be roughly 1000 times as powerful.

And since Io has no atmosphere to speak of, and the planet’s mass is significantly less than that of Earth’s (0.015 that of Earth’s to exact), the lava shoots off into space. Thus, for anyone standing on the moon’s surface, the result would look very much like a space launch at night, with plumes of flames reaching from the ground and extending indefinitely into the sky.

Io_Earth_Moon_ComparisonAs de Pater further indicated in the course of her interview, volcanic activity remains quite unpredictable on the Jovian moon:

We never know about eruptions – they can last hours, days months or years, so we have no idea how long it will stay active. but we are very excited about it.

No data or imagery has been released on the new eruption yet since the team is still making their observations and will be writing a paper on this topic. One thing is clear at this point, though. Despite its mysterious nature, Io still has a few surprises left for Earth scientists.

And for more information on the mysterious planet of Io, check out this Astronomycast podcast, featuring an interview with Dr. Pamela Gay of Southern Illinois University:


Source: universetoday.com, astronomycast.com

50,000 Hits!

photo by tt83x at deviantART

Well wouldn’t you know it, another milestone has happened this week and I almost missed it! Yes, today, after roughly two years and four months of keeping this blog up, I passed the 50,000 mark! Woooooo! Yay for me! And yay for the people who have nothing better to do than read my thoughts. I would pity you, but right now I’m too happy!

Of course, I would like to thank all those people who have chosen to follow me since this blog first went up. But according to my stock ticker, that’s like a thousand people. So instead of naming names and risk leaving anyone out, let me just send a grand digital hug out there and hope everyone catches some of it.

However, I must thank one person, Mr. Fraser Cain over at Universetoday.com who inspired me to start this blog in the first place. It was he who convinced me to bring my message directly to the good people and avoid the needlessly long and inopportune process of waiting on a publisher. And so I take this opportunity to thank him for all the good stuff that has come of it. Thanks Fraser, hope to see you and the family again soon!

And of course, I would also like to take this opportunity to say that there’s still lots of work to be done. Though I could pack up now and say I’ve explored the crap out of the world of sci-fi, the real point of this site is to share ideas, promote my and others’ works of literature, and make connections with people. I can’t foresee that ending any time soon, nor would I want to. The work and connecting must go on!

And I look forward to it. I’ve made many great friends and been able to liaise with many great talents since I got here. So why stop now? I want to success, I want to be able to share it with people. Yes, I totally plan to let it go to my head, but I also plan on spreading the good fortune around. You might want to be there, just in case… 😉 Thanks you all and let’s keep this ball rolling!

Starship Enterprise… in 20 years!

My pal Fraser Cain over at Universe Today has once again posted the latest from the sci-fi universe. Despite my best efforts, I just can’t seem to keep up with the professionals! Apparently, an engineer has stipulated that the original Enterprise, the Constitution-class vessel from the original series, could be built in 20 years.

In the original series, this ship was built by a team of Star Fleet engineers in the year 2245. However, this engineer describes – in excrutiating detail- how we could do it by 2032, and using current technology.

Everything from the ion drives, the artificial gravity, a 100 megawatt laser, and landing pods and shuttles. Everything but the warp drive… that’s going to take some more time. But dammit, the Star Trek engineers never specified how that whole “warp bubble” thing works anyway!

This ship could make the trip from Earth to the Moon in just three days, and Mars in ninety. Such a ship, with the capacity to carry a large crew and land people with its compliment of shuttles, would be the first step towards colonizing the Solar System. First the Moon, then Mars, then Europa and Ganymede. Perhaps Oberon and Titan too… Skies the limit, apparently!

Like many things, this latest revelation teaches us that the future is coming faster than previously thought. Already we’ve seen compads and peronsal communicators arrive early (iPads and cell phones). If starships make it on the scene a full two centuries ahead of schedule, then it will just prove what guys like Kurzweil say all the time. Technology is not linear, its exponential, and everyday the future gets that much closer… Profoundness! Cue Star Trek music!