The Future of Building: Superefficient Nanomaterials

carbon-nanotubeToday, we are on the verge of a fabrication revolution. Thanks to developments in nanofabrication and miniaturization, where materials can be fashioned down the cellular (or even atomic) level, the option of making bigger and stronger structures that happen to weight less is becoming a reality. This is the goal of materials scientist Julia Greer and her research lab at Caltech.

As an example, Greer offers the The Great Pyramid of Giza and the Eiffel Tower. The former is 174 meters tall and weighs 10 megatons while the latter is over twice that height, but at five and half kilotons is one-tenth the mass. It all comes down to the “elements of architecture”, which allowed the Eiffel Tower to be stronger and more lightweight while using far less materials.

carbon_nanotube2Whereas the pyramids are four solid walls, the Eiffel Tower is skeletal, and vastly more efficient as a result. Greer and her colleagues are trying to make the same sort of leap on a nano scale, engineering hollow materials that are fantastically lightweight while remaining every bit as stiff and strong. Carbon nanotubes are one such example, but the range of possibilities are immense and due to explode in the near future.

The applications for this “Hierarchical Design” are also myriad, but its impact could be profound. For one, these ultralight wonders offer a chance to drastically reduce our reliance on fossil fuels, allowing us to make familiar goods with less raw stuff. But they also could also expand our idea of what’s possible with material science, opening doors to designs that are inconceivable today.

It’s all here on this video, where Greer explains Hierarchical Design and the possibilities it offers below:


Source: wired.com