The Future is Here: Carbon Nanotube Computers

carbon-nanotubeSilicon Valley is undergoing a major shift, one which may require it to rethink its name. This is thanks in no small part to the efforts of a team based at Stanford that is seeking to create the first basic computer built around carbon nanotubes rather than silicon chips. In addition to changing how computers are built, this is likely to extend the efficiency and performance.

What’s more, this change may deal a serious blow to the law of computing known as Moore’s Law. For decades now, the exponential acceleration of technology – which has taken us from room-size computers run by punched paper cards to handheld devices with far more computing power – has depended the ability to place more and more transistors onto an individual chip.

PPTMooresLawaiThe result of this ongoing trend in miniaturization has been devices that are becoming smaller, more powerful, and cheaper. The law used to describe this – though “basic rule” would be a more apt description – states that the number of transistors on a chip has been doubling every 18 months or so since the dawn of the information age. This is what is known as “Moore’s Law.”

However, this trend could be coming to an end, mainly because its becoming increasingly difficult, expensive and inefficient to keep jamming more tiny transistors on a chip. In addition, there are the inevitable physical limitations involved, as miniaturization can only go on for so long before its becomes unfeasible.

carbon_nanotubecomputerCarbon nanotubes, which are long chains of carbon atoms thousands of times thinner than a human hair, have the potential to be more energy-efficient and outperform computers made with silicon components. Using a technique that involved “burning” off and weeding out imperfections with an algorithm from the nanotube matrix, the team built a very basic computer with 178 transistors that can do tasks like counting and number sorting.

In a recent release from the university, Stanford professor Subhasish Mitra said:

People have been talking about a new era of carbon nanotube electronics moving beyond silicon. But there have been few demonstrations of complete digital systems using this exciting technology. Here is the proof.

Naturally, this computer is more of a proof of concept than a working prototype. There are still a number of problems with the idea, such as the fact that nanotubes don’t always grow in straight lines and cannot always “switch off” like a regular transistor. The Stanford team’s computer’s also has limited power due to the limited facilities they had to work with, which did not have access to industrial fabrication tools.

carbon_nanotube2All told, their computer is only about as powerful as an Intel 4004, the first single-chip silicon microprocessor that was released in 1971. But given time, we can expect more sophisticated designs to emerge, especially if design teams have access to top of the line facilities to build prototypes.

And this research team is hardly alone in this regard. Last year, Silicon Valley giant IBM managed to create their own transistors using carbon nanotubes and also found that they outperformed the transistors made of silicon. What’s more, these transistors measured less than ten nanometers across, and were able to operated using very low voltage.

carbon_nanotube_transistorSimilarly, a research team from Northwestern University in Evanston, Illinois managed to create something very similar. In their case, this consisted of a logic gate – the fundamental circuit that all integrated circuits are based on – using carbon nanotubes to create transistors that operate in a CMOS-like architecture. And much like IBM and the Standford team’s transistors, it functioned at very low power levels.

What this demonstrated is that carbon nanotube transistors and other computer components are not only feasible, but are able to outperform transistors many times their size while using a fraction of the power. Hence, it is probably only a matter of time before a fully-functional computer is built – using carbon nanotube components – that will supersede silicon systems and throw Moore’s Law out the window.

Sources: news.cnet.com, (2), fastcolabs.com

Of Mechanical Minds

A few weeks back, a friend of mine, Nicola Higgins, directed me to an article about Google’s new neural net. Not only did she provide me with a damn interesting read, she also challenged me to write an article about the different types of robot brains. Well, Nicola, as Barny Stintson would say “Challenge Accepted!”And I got to say, it was a fun topic to get into.

After much research and plugging away at the lovely thing known as the internet (which was predicted by Vannevar Bush with his proposed Memor-Index system (aka. Memex) 50 years ago, btw) I managed to compile a list of the most historically relevant examples of mechanical minds, culminating in the development of Google’s Neural Net. Here we go..

Earliest Examples:
Even in ancient times, the concept of automata and arithmetic machinery can be found in certain cultures. In the Near East, the Arab World, and as far East as China, historians have found examples of primitive machinery that was designed to perform one task or another. And even though few specimens survive, there are even examples of machines that could perform complex mathematical calculations…

Antikythera mechanism:
Invented in ancient Greece, and recovered in 1901 on the ship that bears the same name, the Antikythera is the world’s oldest known analog calculator, invented to calculate the positions of the heavens for ancient astronomers. However, it was not until a century later that its true complexity and significance would be fully understood. Having been built in the 1st century BCE, it would not be until the 14th century CE that machines of its complexity would be built again.

Although it is widely theorized that this “clock of the heavens” must have had several predecessors during the Hellenistic Period, it remains the oldest surviving analog computer in existence. After collecting all the surviving pieces, scientists were able to reconstruct the design (pictured at right), which essentially amounted to a large box of interconnecting gears.

Pascaline:
Otherwise known as the Arithmetic Machine and Pascale Calculator, this device was invented by French mathematician Blaise Pascal in 1642 and is the first known example of a mechanized mathematical calculator. Apparently, Pascale invented this device to help his father reorganize the tax revenues of the French province of Haute-Normandie, and went on to create 50 prototypes before he was satisfied.

Of those 50, nine survive and are currently on display in various European museums. In addition to giving his father a helping hand, its introduction launched the development of mechanical calculators all over Europe and then the world. It’s invention is also directly linked to the development of the microprocessing circuit roughly three centuries later, which in turn is what led to the development of PC’s and embedded systems.

The Industrial Revolution:
With the rise of machine production, computational technology would see a number of developments. Key to all of this was the emergence of the concept of automation and the rationalization of society. Between the 18th and late 19th centuries, as every aspect of western society came to be organized and regimented based on the idea of regular production, machines needed to be developed that could handle this task of crunching numbers and storing the results.

Jacquard Loom:
Invented by Joseph Marie Jacquard, a French weaver and merchant, in 1801, the Loom that bears his name is the first programmable machine in history, which relied on punch cards to input orders and turn out textiles of various patterns. Thought it was based on earlier inventions by Basile Bouchon (1725), Jean Baptiste Falcon (1728) and Jacques Vaucanson (1740), it remains the most well-known example of a programmable loom and the earliest machine that was controlled through punch cards.

Though the Loom was did not perform computations, the design was nevertheless an important step in the development of computer hardware. Charles Babbage would use many of its features to design his Analytical Engine (see next example) and the use of punch cards would remain a stable in the computing industry well into the 20th century until the development of the microprocessor.

Analytical Engine:
Also known as the “Difference Engine”, this concept was originally proposed by English Mathematician Charles Babbage. Beginning in 1822 Babbage began contemplating designs for a machine that would be capable of automating the process of creating error free tables, which arose out of difficulties encountered by teams of mathematicians who were attempting to do it by hand.

Though he was never able to complete construction of a finished product, due to apparent difficulties with the chief engineer and funding shortages, his proposed engine incorporated an arithmetical unit, control flow in the form of conditional branching and loops, and integrated memory, making it the first Turing-complete design for a general-purpose computer. His various trial models (like that featured at left) are currently on display in the Science Museum in London, England.

The Birth of Modern Computing:
The early 20th century saw the rise of several new developments, many of which would play a key role in the development of modern computers. The use of electricity for industrial applications was foremost, with all computers from this point forward being powered by Alternating and/or Direct Current and even using it to store information. At the same time, older ideas would be remain in use but become refined, most notably the use of punch cards and tape to read instructions and store results.

Tabulating Machine:
The next development in computation came roughly 70 years later when Herman Hollerith, an American statistician, developed a “tabulator” to help him process information from the 1890 US Census. In addition to being the first electronic computational device designed to assist in summarizing information (and later, accounting), it also went on to spawn the entire data processing industry.

Six years after the 1890 Census, Hollerith formed his own company known as the Tabulating Machine Company that was responsible for creating machines that could tabulate info based on punch cards. In 1924, after several mergers and consolidations, Hollerith’c company was renamed International Business Machines (IBM), which would go on to build the first “supercomputer” for Columbia University in 1931.

Atanasoff–Berry Computer:
Next, we have the ABC, the first electronic digital computing device in the world. Conceived in 1937, the ABC shares several characteristics with its predecessors, not the least of which is the fact that it is electrically powered and relied on punch cards to store data. However, unlike its predecessors, it was the first machine to use digital symbols to compute and was the first computer to use vacuum tube technology

These additions allowed the ABC to acheive computational speeds that were previously thought impossible for a mechanical computer. However, the machine was limited in that it could only solve systems of linear equations, and its punch card system of storage was deemed unreliable. Work on the machine also stopped when it’s inventor John Vincent Atanasoff was called off to assist in World War II cryptographic assignments. Nevertheless, the machine remains an important milestone in the development of modern computers.

Colossus:
There’s something to be said about war being the engine of innovation. The Colossus is certainly no stranger to this rule, the machine used to break German codes in the Second World War. Due to the secrecy surrounding it, it would not have much of an influence on computing and would not be rediscovered until the 1990’s. Still, it represents a step in the development of computing, as it relied on vacuum tube technology and punch tape in order to perform calculations, and proved most adept at solving complex mathematical computations.

Originally conceived by Max Newman, the British mathematician who was chiefly responsible fore breaking German codes in Bletchley Park during the war, the machine was a proposed means of combatting the German Lorenz machine, which the Nazis used to encode all of their wireless transmissions. With the first model built in 1943, ten variants of the machine for the Allies before war’s end and were intrinsic in bringing down the Nazi war machine.

Harvard Mark I:
Also known as the “IBM Automatic Sequence Controlled Calculator (ASCC)”, the Mark I was an electro-mechanical computer that was devised by Howard H. Aiken, built by IBM, and officially presented to Harvard University in 1944. Due to its success at performing long, complex calculations, it inspired several successors, most of which were used by the US Navy and Air Force for the purpose of running computations.

According to IBM’s own archives, the Mark I was the first computer that could execute long computations automatically. Built within a steel frame 51 feet (16 m) long and eight feet high, and using 500 miles (800 km) of wire with three million connections, it was the industry’s largest electromechanical calculator and the largest computer of its day.

Manchester SSEM:
Nicknamed “Baby”, the Manchester Small-Scale Experimental Machine (SSEM) was developed in 1948 and was the world’s first computer to incorporate stored-program architecture.Whereas previous computers relied on punch tape or cards to store calculations and results, “Baby” was able to do this electronically.

Although its abilities were still modest – with a 32-bit word length, a memory of 32 words, and only capable of performing subtraction and negation without additional software – it was still revolutionary for its time. In addition, the SSEM also had the distinction of being the result of Alan Turing’s own work – another British crytographer who’s theories on the “Turing Machine” and development of the algorithm would form the basis of modern computer technology.

The Nuclear Age to the Digital Age:
With the end of World War II and the birth of the Nuclear Age, technology once again took several explosive leaps forward. This could be seen in the realm of computer technology as well, where wartime developments and commercial applications grew by leaps and bounds. In addition to processor speeds and stored memory multiplying expontentially every few years, the overall size of computers got smaller and smaller. This, some theorized would lead to the development of computers that were perfectly portable and smart enough to pass the “Turing Test”. Imagine!

IBM 7090:
The 7090 model which was released in 1959, is often referred to as a third generation computer because, unlike its predecessors which were either electormechanical  or used vacuum tubes, this machine relied transistors to conduct its computations. In addition, it was an improvement on earlier models in that it used a 36-bit word length and could store up to 32K (32,768) words, a modest increase in processing over the SSEM, but a ten thousand-fold increase in terms of storage capacity.

And of course, these improvements were mirrored in the fact the 7090 series were also significantly smaller than previous versions, being about the size of a desk rather than an entire room. They were also cheaper and were quite popular with NASA, Caltech and MIT.

PDP-8:
In keeping with the trend towards miniaturization, 1965 saw the development of the first commercial minicomputer by the Digital Equipment Corporation (DEC). Though large by modern standards (about the size of a minibar) the PDP-8, also known as the “Straight-8”, was a major improvement over previous models, and therefore a commercial success.

In addition, later models also incorporated advanced concepts like the Real-Time Operating System and preemptive multitasking. Unfortunately, early models still relied on paper tape in order to process information. It was not until later that the computer was upgraded to take advantage of controlling language  such as FORTRAN, BASIC, and DIBOL.

Intel 4004:
Founded in California in 1968, the Intel Corporation quickly moved to the forefront of computational hardware development with the creation of the 4004, the worlds first Central Processing Unit, in 1971. Continuing the trend towards smaller computers, the development of this internal processor paved the way for personal computers, desktops, and laptops.

Incorporating the then-new silicon gate technology, Intel was able to create a processor that allowed for a higher number of transistors and therefore a faster processing speed than ever possible before. On top of all that, they were able to pack in into a much smaller frame, which ensured that computers built with the new CPU would be smaller, cheaper and more ergonomic. Thereafter, Intel would be a leading designer of integrated circuits and processors, supplanting even giants like IBM.

Apple I:
The 60’s and 70’s seemed to be a time for the birthing of future giants. Less than a decade after the first CPU was created, another upstart came along with an equally significant development. Named Apple and started by three men in 1976 – Steve Jobs, Steve Wozniak, and Ronald Wayne – the first product to be marketed was a “personal computer” (PC) which Wozniak built himself.

One of the most distinctive features of the Apple I was the fact that it had a built-in keyboard. Competing models of the day, such as the Altair 8800, required a hardware extension to allow connection to a computer terminal or a teletypewriter machine. The company quickly took off and began introducing an upgraded version (the Apple II) just a year later. As a result, Apple I’s remain a scarce commodity and very valuable collector’s item.

The Future:
The last two decades of the 20th century also saw far more than its fair of developments. From the CPU and the PC came desktop computers, laptop computers, PDA’s, tablet PC’s, and networked computers. This last creation, aka. the Internet, was the greatest leap by far, allowing computers from all over the world to be networked together and share information. And with the exponential increase in information sharing that occurred as a result, many believe that it’s only a matter of time before wearable computers, fully portable computers, and artificial intelligences are possible. Ah, which brings me to the last entry in this list…

The Google Neural Network:
googleneuralnetworkFrom mechanical dials to vacuum tubes, from CPU’s to PC’s and laptops, computer’s have come a hell of a long way since the days of Ancient Greece. Hell, even within the last century, the growth in this one area of technology has been explosive, leading some to conclude that it was just a matter of time before we created a machine that was capable of thinking all on its own.

Well, my friends, that day appears to have dawned. Already, Nicola and myself blogged about this development, so I shan’t waste time going over it again. Suffice it to say, this new program, which thus far has been able to identify pictures of cats at random, contains the necessary neural capacity to acheive 1/1000th of what the human brain is capable of. Sounds small, but given the exponential growth in computing, it won’t be long before that gap is narrowed substantially.

Who knows what else the future will hold?  Optical computers that use not electrons but photons to move information about? Quantum computers, capable of connecting machines not only across space, but also time? Biocomputers that can be encoded directly into our bodies through our mitochondrial DNA? Oh, the possibilities…

Creating machines in the likeness of the human mind. Oh Brave New World that hath such machinery in it. Cool… yet scary!