Finalists Selected for Qualcomm Tricorder XPrize

Tricorder X_prizeFirst announced in 2012, the Qualcomm Tricorder XPRIZE has sought to bring together the best and brightest minds in the field together to make science fiction science fact. In short, they sought to create a handheld device that could would mimic some of the key functions of the iconic Star Trek tricorder, allowing consumers access to reliable, easy to use diagnostic equipment any time, anywhere, with near instantaneous results.

And now, the list of potential candidates has been whittled down to ten finalists. And while they might be able to live up to the fictitious original, the devices being developed are quite innovative and could represent a significant technological advancement in the diagnostic domain. Qualcomm is offering a US$10 million prize purse in the hope of stimulating the research and development of precision diagnostic equipment.

medical_tricorderIn order to qualify for the prize, the successful scanner must comply with an ambitious set of parameters. First, the device must be able to reliably capture an individual’s heart rate, respiratory rate, blood pressure, and oxygen saturation in an easy to use and completely non-invasive fashion. It must also diagnose 13 core diseases – including pneumonia, tuberculosis and diabetes – along with three additional health conditions to be chosen by each team.

Each device varies widely in terms of appearance and composition, but that’s hardly surprising. The only limitations placed on the teams in terms of construction is that the entire apparatus must have a mass of less than 2.3kg (5 lb). Due to the wide range of tests needed to be carried out by the tricorder in order to capture the necessary health metrics, it is highly unlikely that any of the scanners will take the form of a single device.

qualcommtricorderchallenge-3The shortlisted entries include Scanadu (pictured above), a company which is currently developing an entire portfolio of handheld medical devices. The circular sensor is programmed to measure blood pressure, temperature, ECG, oximetry, heart rate, and the breathing rate of a patient or subject – all from a simple, ten second scan. Then there’s Aezon, an American-based team comprised of student engineers from Johns Hopkins University, Maryland.

The Aezon device is made up of a wearable Vitals Monitoring Unit – designed to capture oxygen saturation, blood pressure, respiration rate and ECG metrics – and The Lab Box, a small portable device that makes use of microfluidic chip technology in order to diagnose diseases ranging from streptococcal pharyngitis to a urinary tract infection by analyzing biological samples.

Tricorder XThe other finalists include CloudDX, a Canadian company from Mississauga, Ontario; Danvantri, from Chennai, India; DMI from Cambridge, Mass; the Dynamical Biomarkers Group from Zhongli City, Taiwan; Final Frontier Medical Devices from Paoli, PA; MESI Simplifying Diagnostics from Ljubljana, Slovenia; SCANurse from London, England; and the Zensor from Belfast, Ireland.

In all cases, the entrants are compact, lightweight and efficient devices that push the information obtained through their multiple sensors to a smartphone or tablet interface. This appears to be done with a proprietary smartphone app via the cloud, where it can also be analyzed by a web application. Users will also be able to access their test results, discover information regarding possible symptoms and use big data to form a possible diagnosis.



The next and final round of tests for the teams will take place next year between November and December. The scanners will be put through a diagnostic competition involving 15-30 patients whilst judges evaluate the consumers user experience. The final test will also assess the scanners’ adequacy in high-frequency data logging, and the overall winners will be announced in early 2016, and awarded the lucrative $10 million prize to develop their product and bring it to market.

If such a device could be simple enough to allow for self-diagnosis by the general public, it could play a key part in alleviating the pressure on overburdened healthcare systems by cutting down on unnecessary hospital visits. It will also be a boon for personalized medicine, making regular hospital visits quicker, easier, and much less expensive. And let’s not forget, it’s science fiction and Trekky-nerd gold!

Be sure to check out the video below that outlines the aims and potential benefits of the Qualcomm Tricorder XPRIZE challenge. And for more information on the finalists, and to see their promotional videos, check out the Qualcomm website here.


The Future is Here: Injectable Foam for the Battlefield

woundfoamGiven the advances in medical technology, it is quite surprising when it comes to gunshot wounds and battlefield injuries, old-world methods are still be used. For example, if a soldier is wounded in an extremity such as the the arm of leg, bandages and/or tourniquets should suffice. But for wounds that occur center mass, or at the junction of an extremity (neck, groin, or shoulder), stopping the flow of blood usually involves simply packing the wound with gauze.

However, in recent months, new and improved solutions have been developed. The first was the XStat, a new type of syringe that contains hundreds of injectable sponges that was developed by a former Special Ops medic and his Oregon-based startup, RevMedX. Similarly, former military and trauma surgeons at Massachusetts General Hospital have been working on Wound Stasis Technology, an injectable foam that is fed into the stomach to stop internal bleeding.

xstat-combat-injury-treatment-injectable-spongesAnd now, a group of students from Johns Hopkins University are working on a hardening foam that can be injected directly into flesh wounds to stop the bleeding. Combining the best of both worlds, the concept involves using a plastic syringe that contains two liquids – polyol and a diisocyanatein – that form a polyurethane foam that expands to fill the wound cavity and then hardens.

This hardened foam not only seals the wound shut, but applies pressure to stop the bleeding. Additionally, while still in its liquid state, the foam is able to run deep and thoroughly into the cavity. This is important, as it’s often difficult to find the sources of blood loss in such injuries, and then apply clotting agents to them. And once the soldier is evacuated to a hospital, the foam is easily removed. Sydney Rooney, the student team leader of the John Hopkins research team, said in an interview with Gizmag:

Since the wound will have to be debrided extensively anyway [have its damaged tissue removed], we are not anticipating any issue in that regard. We are still testing it so we don’t know the final answer, but our physicians aren’t anticipating for it to be a problem. Ideally, most of the block will be removed in one chunk.

When addressing the army’s Wound Stasis Technology, which is currently being developed with the help of DARPA, Rooney claimed that there system is different. Whereas the DARPA system is designed for internal bleeding, applying the same methodology to surface wounds would be impractical. Hence their particular brand of injectable foam, which expands to a degree to stop “junctional bleeds”.

DARPA-FoamOr as he explained it:

Their foam expands to a way larger size and more aggressively than many a junctional bleed permits. Since the stomach expands, their foam expands by 30 times and it doesn’t matter, whereas if you put it in, say, a junctional neck wound, it could apply too much pressure.

The Johns Hopkins device has so far been tested on flesh-simulating gel containing artificial blood vessels, with animal trials planned to take place next. By the time it comes to market, it will be well positioned alongside DARPA’s WST foam for treating battlefield wounds. It may come up against the XStat for treating flesh wounds, but room certainly exists from similar products given the sheer number of wounds on the battlefield.

And given the amount of gun-related violence in the United States and around the world, these inventions will certainly be welcomed by trauma surgeons and police forces once they trickle down to the civilian market. And in the meantime, be sure to check out this cool video from John Hopkins University, where Rooney and her team present their new invention:


The Future of Medicine: Brain Scan Databanks

AI_picCloud computing and the internet are having a profound effect on the field of medicine. As more and more patients have their records digitized and posted in online medical sources, doctor’s are able to better track patient histories, conduct referrals, and make speedier diagnoses. And now, doctors at John Hopkins University are working on a cloud-computing project specifically for children’s brain scans.

By collecting and categorizing thousands of MRI scans from kids with normal and abnormal brains, they say the resulting database will give physicians a sophisticated, “Google-like” search system to help find similar scans as well as the medical records of those children. Such a system could help not only enhance the diagnosis of brain disorders, but the treatment as well, maybe even before clinical symptoms are obvious to the naked eye.

Miller_JohnHopkinsMichael I. Miller, a lead investigator on the project who also heads up the university’s Center for Imaging Science, said in a news release:

If doctors aren’t sure which disease is causing a child’s condition, they could search the data bank for images that closely match their patient’s most recent scan. If a diagnosis is already attached to an image from the data bank, that could steer the physician in the right direction. Also, the scans in our library may help a physician identify a change in the shape of a brain structure that occurs very early in the course of a disease, even before clinical symptoms appear. That could allow the physician to get an early start on the treatment.

Susumu Mori, a radiology professor at the Johns Hopkins School of Medicine and co-lead investigator on what he calls the “biobank,” says that a collection of brain scans of this size will also help neuroradiologists and physicians identify specific malformations far faster than is currently possible.

brain-activityMori has spent the past four-plus years working on a clinical database of more than 5,000 whole brain MRI scans of children who’ve come through Johns Hopkins. This project involved indexing anatomical data on 1,000 structural measurements in 250 brain regions that were ultimately sorted into 22 brain disease categories, including infections, psychiatric disorders, epilepsy, and chromosomal abnormalities.

The project, which was made possible by a three-year $600,000 grant from the National Institutes of Health, is still in its pilot stage and available only to physicians and patients within the Johns Hopkins medical system. But the researchers say it could open up and expand to other networks in the coming years. Such an expansion would presumably benefit not only other physicians and patients, but the database itself.

brainscansResearchers are also working on a similar project to collect scans of elderly patients to focus on age-related diseases and neurological disorders. Combined with the pediatric databank, this new brain scan archive will not only help recognize established neurological disorders, but could even possibly help identify and classify new ones as well.

But one of the key words here in anonymous. While cloud computing and patient files may raise the specter of privacy for many, the current project maintains patient confidentially. And one can further assume that voluntary compliance will be maintained as databases like these expand. After all, one does not need to know a patient’s name in order to examine what anomalies their brains exhibit.

And in the meantime, be sure to check out this video of Michael Miller explaining the new brain scan project and computational anatomy in greater detail: