News from Aerospace: XS-1 Experimental Spaceplane

northrop-grumman-xs-1-spaceplaneThe race to produce a new era or reusable and cost-effective spacecraft has been turning out some rather creative and interesting designs. DARPA’s XS-1 Spaceplane is certainly no exception. Developed by Northrop Grumman, in partnership with Scaled Composites and Virgin Galactic, this vehicle is a major step towards producing launch systems that will dramatically reduce the costs of getting into orbit.

Key to DARPA’s vision is to develop a space-delivery system for the US military that will restore the ability of the US to deploy military satellites ingeniously. In a rather ambitious twist, they want a vehicle that can be launched 10 times over a 10-day period, fly in a suborbital trajectory at speeds in excess of Mach 10, release a satellite launch vehicle while in flight, and reduce the cost of putting a payload into orbit to US$5 million (a tenth of the current cost).

XS-1_1Under DARPA contracts, Boeing, Masten Space Systems, and Northrop Grumman are working on their own versions of the spaceplane. The Northrop plan is to employ a reusable spaceplane booster that, when coupled with an expendable upper stage, can send a 1360 kgs (3,000 pounds) spacecraft into low Earth orbit. By comping reusable boosters with aircraft-like operations on landing, a more cost-effective and resilient spacecraft results.

In flight, the Northrop version of the XS-1 will take advantage of the company’s experience in unmanned aircraft to use a highly autonomous flight system and will release an expendable upper stage, which takes the final payload into orbit. While this is happening, the XS-1 will fly back to base and land on a standard runway like a conventional aircraft, refuel, and reload for the next deployment.

Spaceshiptwo-580x256Northrop is working under a $3.9 million phase one contract with DARPA to produce a design and flight demonstration plan that will allow the XS-1 to not only act as a space launcher, but as a testbed for next-generation hypersonic aircraft. Meanwhile Scaled Composites, based in Mojave, will be in charge of fabrication and assembly while Virgin Galactic will handle commercial spaceplane operations and transition.

Doug Young, the vice president of missile defense and advanced missions at Northrop Grumman Aerospace Systems, had this to say about the collaboration:

Our team is uniquely qualified to meet DARPA’s XS-1 operational system goals, having built and transitioned many developmental systems to operational use, including our current work on the world’s only commercial spaceline, Virgin Galactic’s SpaceShipTwo. We plan to bundle proven technologies into our concept that we developed during related projects for DARPA, NASA and the U.S. Air Force Research Laboratory, giving the government maximum return on those investments.

space_elevator2Regardless of which contractor’s design bears fruit, the future of space exploration is clear. In addition to focusing on cutting costs and reusability, it will depend heavily upon public and private sector collaboration. As private space companies grab a larger share of the space tourism and shipping market, they will be called upon to help pick up the slack, and lend their expertise to more ambitious projects.

Examples abound, from putting satellites, supplies and astronauts into orbit, to landing settlers on Mars itself. And who knows? In the foreseeable future, NASA, Russia, China, the ESA and Japan may also be working hand-in-hand with transport and energy companies to make space-based solar power and a space elevator a reality!

Source: gizmag.com, globenewswire.com

Drone Wars: Bigger, Badder, and Deadlier

UAVsIn their quest to “unman the front the lines”, and maintain drone superiority over other states, the US armed forces have been working on a series of designs that will one day replace their air fleet of Raptors and Predators. Given that potential rivals, like Iran and China, are actively imitating aspects of these designs in an added incentive, forcing military planners to think bigger and bolder.

Consider the MQ-4C Triton Unmanned Aerial System (UAS), a jet-powered drone that is the size of a Boeing 757 passenger jet. Developed by Northrop Grumman and measuring some 40 meters (130 feet) from wingtip to wingtip, this “super drone” is intended to replace the US Navy’s fleet of RQ-4 Global Hawks, a series of unmanned aerial vehicles that have been in service since the late 90’s.

Triton_droneThanks to a sensor suite that supplies a 360-degree view at a radius of over 3700 kms (2,300 miles), the Triton can provide high-altitude, real-time intelligence, surveillance and reconnaissance (ISR) at heights and distances in excess of any of its competitors. In addition, the drone possess unique de-icing and lightning protection capabilities, allowing to plunge through the clouds to get a closer view at surface ships.

And although Triton has a higher degree of autonomy than the most autonomous drones, operators on the ground are still relied upon to obtain high-resolution imagery, use radar for target detection and provide information-sharing capabilities to other military units. Thus far, Triton has completed flights up to 9.4 hours at altitudes of 15,250 meters (50,000 feet) at the company’s manufacturing facility in Palmdale, California.

?????????????????????????????????Mike Mackey, Northrop Grumman’s Triton UAS program director, had the following to say in a statement:

During surveillance missions using Triton, Navy operators may spot a target of interest and order the aircraft to a lower altitude to make positive identification. The wing’s strength allows the aircraft to safely descend, sometimes through weather patterns, to complete this maneuver.

Under an initial contract of $1.16 billion in 2008, the Navy has ordered 68 of the MQ-4C Triton drones with expected delivery in 2017. Check out the video of the Triton during its most recent test flight below:


But of course, this jetliner-sized customer is just one of many enhancements the US armed forces is planning on making to its drone army. Another is the jet-powered, long-range attack drone that is a planned replacement for the aging MQ-1 Predator system. It’s known as the Avenger (alternately the MQ-1 Predator C), a next-generation unmanned aerial vehicle that has a range of close to 3000 kms (1800 miles).

Designed by General Atomics, the Avenger is designed with Afghanistan in mind; or rather, the planned US withdrawal by the end 0f 2014. Given the ongoing CIA anti-terrorism operations in neighboring Pakistan are expected to continue, and airstrips in Afghanistan will no longer be available, the drones they use will need to have significant range.

(c) Kollected Pty Ltd.

The Avenger prototype made its first test flight in 2009, and after a new round of tests completed last month, is now operationally ready. Based on the company’s more well-known MQ-9 Reaper drone, Avenger is designed to perform high-speed, long-endurance surveillance or strike missions, flying up to 800 kms (500 mph) at a maximum of 15,250 meters (50,000 feet) for as long as 18 hours.

Compared to its earlier prototype, the Avenger’s fuselage has been increased by four feet to accommodate larger payloads and more fuel, allowing for extended missions. It can carry up to 1000 kilograms (3,500 pounds) internally, and its wingspan is capable of carrying weapons as large as a 2,000-pound Joint Direct Attack Munition (JDAM) and a full-compliment of Hellfire missiles.

Avenger_drone1Switching from propeller-driven drones to jets will allow the CIA to continue its Pakistan strikes from a more distant base if the U.S. is forced to withdraw entirely from neighboring Afghanistan. And according to a recent Los Angeles Times report, the Obama administration is actively making contingency plans to maintain surveillance and attacks in northwest Pakistan as part of its security agreement with Afghanistan.

The opportunity to close the gap between the need to act quickly and operating from a further distance with technology isn’t lost on the US military, or the company behind the Avenger. Frank Pace, president of the Aircraft Systems Group at General Atomics, said in a recent statement:

Avenger provides the right capabilities for the right cost at the right time and is operationally ready today. This aircraft offers unique advantages in terms of performance, cost, timescale, and adaptability that are unmatched by any other UAS in its class.

??????????????????????????????What’s more, one can tell by simply looking at the streamlined fuselage and softer contours that stealth is part of the package. By reducing the drone’s radar cross-section (RCS) and applying radar-absorbing materials, next-generation drone fleets will also be mimicking fifth-generation fighter craft. Perhaps we can expect aerial duels between remotely-controlled fighters to follow not long after…

And of course, there’s the General Atomic’s Avenger concept video to enjoy:


Sources:
wired.com, (2)

The Future is Here: The Holodeck Video Trainer

VIPE1A current obsession of military planners is keeping up with the latest in battlefield challenges while also dealing with troop reductions and tightened budgets. Video games are one solution, providing soldiers with  training that does not involve real munitions or loss of equipment. Unfortunately, most of these games do not provide a real-world immersive feel, coming as close to the real thing as possible while still being safe.

Hence why the the Army Contracting Command enlisted the help of Northrop Grumman this past January to integrate their Virtual Immersive Portable Environment (VIPE) “Holodeck” into the US Army’s training program. Much like the CAVE2, a VR platform created by the Electronic Visualization Laboratory (EVL) at the University of Illinois, this latest holodeck is a step towards fully-realized VR environments.

VIPE_HolodeckUsing commercial, off-the-shelf hardware combined with gaming technology, the VIPE Holodeck virtual training system provides users with a 360 degree, high-fidelity immersive environment with a variety of mission-centric applications. It can support live, virtual and constructive simulation and training exercises including team training, cultural and language training and support for ground, air and remote platform training.

Last year, the VIPE Holodeck took first place in the Federal Virtual Challenge – an annual competition led by the U.S. Army Research Laboratory’s Simulation and Training Technology Center – for the system’s Kinect integration navigation sensor, which gives users the ability to crawl, walk, run, stop, jump, and move side to side in the virtual environment.

?????????????????????????????????According to Northrop, the VIPE Holodeck moves ahead of other virtual simulators thanks to its advanced situational training, where service members can walk through an area in the replicated virtual environment and prepare for what they may encounter in real life. This works not only for infantry and target practice, but for vehicle drivers and police officers looking to simulate various situations they are likely to encounter.

To enhance that training, operators can drop threats into the environment, including IEDs and enemy shooters, as well as signals that should tip them off to potential threats and see how they respond before they actually find themselves in that situation. This sort of versatile, multi-situational complexity is precisely what the Army is looking for.

VIPE3Brig. Gen. Michael Lundy, deputy commanding general at the Army Combined Arms Center, said during the AUSA Aviation symposium earlier this month:

For us to be able to execute realistic training — good training — we have to be able to bring that operational environment [into the virtual world]. We want to get away from having multiple environments, virtual gaming and instruction, and go to one synthetic environment, get to a lower overhead and integrate the full operations process … according to the common operating picture.

But looking ahead, the applications for this type of technology are virtually (no pun!) limitless, never mind the fact that we are realizing something directly out of Star Trek. Northrop says it’s also exploring options for VIPE as a stepping stone to live-training within the medical field, as well as law enforcement and first responders for situations such as live-shooter or hostage scenarios.

ESO2Immersive virtual reality also figures quite prominently in NASA’s and other space agencies plans for future exploration. Given that manned missions are expensive, time-consuming, and potentially dangerous, mission planners are investigating Telexploration as a possible alternative. Here, orbiters and rovers would transmit visual information in real-time, while VR decks would be used to give the appearance of being on location.

As Ryan Frost, Northrop’s program manager for the VIPE Holodeck, put it:

The great thing about virtual reality and gaming technology [is that] it’s moving so rapidly that really it has endless possibilities that we can do. If you can think it, we can create it, eventually.

And be sure to check out this video from Northrop Grumman showing the VIPE Holodeck in action:


Sources:
wired.com, northropgrumman.com