Reciprocity – The Deets

self-aware-colonyHey again, all. I find myself with some spare time for the first time in awhile. So I thought I might take a moment to share an idea I’ve been working with, in a bit more detail. Last post I made, I talked about the bare bones of a story I am working on known as Reciprocity, the successor to the story known as Apocrypha. But as it turns out, there are a lot of details to that story idea that I still want to share and get people’s opinion on.

You might say this is a story that I am particularly serious about. Should it work out, it would be my break from both space-opera sci-fi and zombie fiction. A foray into the world of hard-hitting social commentary and speculative science fiction.

The Story:
So the year is 2030. The world is reeling from the effects of widespread drought, wildfires, coastal storms, flooding, and population displacement. At the same time, a revolution is taking place in terms of computing, robotics, biomachinery, and artificial intelligence. As a result, the world’s population finds itself being pulled in two different directions – between a future of scarcity and the promise of plenty.

space-solar-headSpace exploration continues as private aerospace and space agencies all race to put boots on Mars, a settlement on the Moon, and lay claim to the resources of the Solar System. India, China, the US, the EU, Russia, Argentina, Brazil, and Iran are all taking part now – using robotic probes and rovers to telexplore the System and prospect asteroids. Humanity’s future as an interplanetary species seems all but guaranteed at this point.

Meanwhile, a new global balance of power is shaping up. While the US and the EU struggle with food and fuel shortages, Russia remains firmly in the grips of quasi-fascist interests, having spurned the idea of globalization and amicable relations with NATO and the EU in favor of its Collective Security Treaty, which in recent years has expanded to include Iran, Afghanistan and Pakistan.

shanghai_towerMeanwhile, China is going through a period of transition. After the fall of Communism in 2023, the Chinese state is lurching between the forces of reform and ultra-nationalism, and no one is sure which side it will fall on. The economy has largely recovered, but the divide between rich and poor is all too apparent. And given the sense of listless frustration and angst, there is fear that a skilled politician could exploit it all too well.

It’s an era of uncertainty, high hopes and renewed Cold War.

The MacGuffin:
The central item of the story is a cybervirus known as Baoying, a quantum-decryption algorithm that was designed by Unit 61398 in the early 2020’s to take down America’s quantum networks in the event of open war. When the Party fell from power, the Unit was dissolved and the virus itself was destroyed. However, rumors persisted that one or more copies still exist…

MatrixBackgroundNotable Characters:
For this ensemble to work, it had to represent a good cross-section of the world that will be, with all its national, social and economic boundaries represented. And so I came up with the following people, individuals who find themselves on different sides of what’s right, and are all their own mix of good, bad, and ambiguous.

William Harding: A privileged high school senior with an big of a drug problem who lives in Port Coquitlam, just outside of the Pacific Northwest megalopolis of Cascadia. Like many people his age, he carries all his personal computing in the form of implants. However, a kidnapping and a close brush with death suddenly expand his worldview. Being at the mercy of others and deprived of his hardware, he realizes that his lifestyle have shielded him from the real world.

Amy Dixon: A young refugee who has moved to Cascadia from the American South. Her socioeconomic status places her and her family at the fringes of society, and she is determined to change their fortunes by plying her talents and being the first in her family to get a comprehensive education.

Climate_ChangeFernie Dixon: Amy’s brother, a twenty-something year-old man who lives away from her and claims to be a software developer. In reality, he is a member of the local Aryan Brotherhood, one of many gangs that run rampant in the outlying districts of the city. Not a true believer like his “brothers”, he seeks money and power so he can give his sister the opportunities he knows she deserves.

Shen Zhou: A former Lieutenant in the People’s Liberation Army and member of Unit 61398 during the Cyberwars of the late teens. After the fall of Communism, he did not ingratiate himself to the new government and was accused of spying for foreign interests. As  result, he left the country to pursue his own agenda, which places him in the cross hairs of both the new regime and western governments.

artificial-intelligenceArthur Banks: A major industrialist and part-owner of Harding Enterprises, a high-tech multinational that specializes in quantum computing and the development of artificial intelligence. For years, Banks and his associates have been working on a project known as QuaSI – a Quantum-based Sentient Intelligence that would revolutionize the world and usher in the Technological Singularity.

Rhianna Sanchez: Commander of Joint Task Force 2, an elite unit attached to National Security Agency’s Cyberwarfare Division. For years, she and her task force have been charged with locating terror cells that are engaged in private cyberwarfare with the US and its allies. And Shen Zhou, a suspected terrorist with many troubling connections, gets on their radar after a mysterious kidnapping and high-profile cyberintrusion coincide.

And that about covers the particulars. Naturally, there are a lot of other details, but I haven’t got all day and neither do you fine folks 😉 In any case, the idea is in the queue and its getting updated regularly. But I don’t plan to have it finished until I’ve polished off Oscar Mike, Arrivals, and a bunch of other projects first!

News from SpaceX: More Tests and the Coming Launch

spaceX_elonmuskElon Musk just can’t get enough of the spotlight lately! But that’s the price you pay for being a billionaire, innovator, genius-type person! And barely a week after announcing his idea for the Hyperloop high-speed train, it now seems that SpaceX is once again making the news, thanks to its latest test of the Grasshopper reusable rocket system as well as their planned launch of the Falcon Heavy rocket.

For those unfamiliar with the Grasshopper, this is a proposed reusable rocket system that Musk and SpaceX created with the hopes of bringing the costs associated with space launches down considerably. Since September 2012, the rocket has been put through successive tests, reaching higher and higher altitudes and safely making it back to the ground.

grasshopper_lateraldivertIn this latest test, the rocket successfully performed a “lateral divert test”. In all previous tests, the rocket lifted off vertically from a launch pad and then used its Merlin-1D engine to ease itself back down to the pad. However, in actual launch situations, the rocket wont simply be traveling up and down. When it comes time to land, a considerable amount of lateral steering will be necessary to line it back up with the launch site.

This is what the test, which took place on Tuesday, August 13th, amounted to. It began with the Grasshopper reaching its previously-achieved altitude of 250 meters, but then continued with the rocket moving an additional 100 m (328 ft) to one side. It was subsequently still able to land safely back at the center of the launch pad, compensating for its lateral diversion.

According to SpaceX: “The test demonstrated the vehicle’s ability to perform more aggressive steering maneuvers than have been attempted in previous flights.” What’s more, it places the company that much closer to the realization of a truly reusable rocket system, something which will drastically cut costs for future space missions.

And of course, they were sure to catch the entire test on video:

But equally important for this rising company that seeks to privatize space travel was the announcement that they have are moving ahead with plans to launch their Falcon Heavy rocket system by late 2013 or early 2014. At present, the Falcon is the most power rocket system in the world, overshadowed only by the now retired – but soon to be reserviced – Saturn V booster that put the Apollo astronauts into space and on the Moon.

spaceX-falcon9As Musk himself said of the rocket:

Falcon Heavy will carry more payload to orbit or escape velocity than any vehicle in history, apart from the Saturn V moon rocket, which was decommissioned after the Apollo program. This opens a new world of capability for both government and commercial space missions.

Fully loaded, the Falcon Heavy will be able to carry payloads of 53 metric tons (117,000 pounds or 53,070 kg) into orbit, and is made up of two engine stages. The first stage consists of a Falcon 9 rocket, with a nine-engine cores, followed by two additional nine-engine cores attached to either side. In addition, the Merlin engines have been upgraded to handle the additional weight, and are being tested at SpaceX’s facility in McGregor, Texas.

flacon-heavy-3At liftoff the 69.2m (227 ft) long Falcon Heavy will generate 3.8 million pounds of thrust, which is equivalent to the thrust of fifteen Boeing 747’s taking off at the same time. SpaceX claims that this gives the Falcon Heavy more than twice the performance of the next most powerful vehicle – the Delta IV Heavy operated by the Boeing-Lockheed Martin joint venture United Launch Alliance.

SpaceX also says that with more than twice the payload of the Delta IV but at one third the cost, the Falcon Heavy sets a new world record in terms of economy at approximately US$1,000 per pound to orbit. This is in keeping with Musk’s promise to bring the associated costs of space travel and exploration down, hopefully one day to his goal of $500 per pound.


spaceX_solararrayWith the ability to carry satellites or interplanetary spacecraft to orbit, SpaceX is offering the Falcon Heavy on the commercial market for US$80–$125 million, which compares to the $435 million per launch the U.S. Air Force has budgeted for four launches in 2012. So in effect, Musk’s company is offering a money-saving alternative to both the public and private sector.

For those fascinated by the long-term potential of space travel, this is certainly exciting news. By cutting the costs of placing satellites, supplies and people in orbit, many things are being made feasible that were previously impossible. This includes conducting more research in orbit, the ability to create space-based solar arrays (a very cool solution to our current power problems and the limitations of Earth-based solar power) and perhaps even begin work on a Moon settlement.

solar_system1Beyond that, there are the growing possibilities of commercial space travel, space tourism, and even setting our sights father afield with manned missions to the Moon, prospecting missions to the asteroid belt, and surveying probes to Jupiter’s Moons and to the very edge of the Solar System. Possibly even beyond…

Exciting times we live in, when the impossible is slowly becoming possible!

Sources:, (2),


Exploring the Universe with Robotic Avatars and Holodecks

holodeck_nasaSpace exploration is littered with all kinds of hazards. In addition to the danger of dying from decompression, mechanical failures, micro-meteoroids or just crashing into a big ball of rock, there are also the lesser-known problems created by low-gravity, time dilation, and prolonged isolation. Given all that, wouldn’t it just be easier to send probes out to do the legwork, and use virtual technology to experience it back home?

That’s the idea being presented by Dr. Jeff Norris, one of the scientists who works for NASA’s Jet Propulsion Laboratory in Pasadena, California. In a recent presentation that took place at Pax Prime last year – entitled “NASA’s Got Game” – he spoke of the agency’s plans for telexploration – the process of exploring the universe using robotic avatars and holodecks, rather than sending manned flights into deep space.

avatar_imageIn the course of making this presentation, Norris noted several key advantages to this kind of exploration. In addition to being safer and cheaper, its also more readily available. Whereas deep space exploration involving space ships with FTL engines – the Alcubierre Drive they are currently working on – will eventually be available, robot space probes and advanced telecommunications technology are available right now.

At the same time, telexploration is also more democratic. Whereas conventional space travel involves a select few of highly-trained, eminently qualified people witnessing the wonders of the universe, robotic avatars and holographic representations bring the experience home, where millions of people can experience the awe and wonder for themselves. And when you think about it, it’s something we’re already doing, thanks to the current generation of space probes, satellites and – of course! – the Curiosity Rover.

Curiosity_selfportraitBasically, rather than waiting for the warp drive, Norris believes another Star Trek technology – the holodeck – will be the more immediate future of space exploration, one that we won’t have to wait for. Yes, there are more than a few Star Trek motifs going on in this presentation, and a little Avatar too, but that’s to be expected. And as we all know, life can imitate art, and the truth is always stranger than fiction!

Check out the video of the presentation below:

And remember…