Is the Universe One Big Hologram?

universe_nightsky“You know how I can tell we’re not in the Matrix?  If we were, the food would be better.” Thus spoke Sheldon Cooper, the socially-challenged nerd from The Big Bang Theory. And yet, there is actually a scientific theory that posits that the universe itself could be a 2D hologram that is painted on some kind of cosmological horizon and only pops into 3D whenever we observe it (aka. always).

And in what may be the most mind-boggling experiment ever, the US Department of Energy’s Fermi National Accelerator Laboratory (Fermilab) seeks to test this theory for the first time. Their tool for this is the Holometer, a device which has been under construction for a couple of years. It is now operating at full power and will gather data for the next year or so, at which time it will seek to uncover if the universe is a hologram, and what it’s composed of.

big_bangThe current prevailing theories about how the universe came to be are the Big Bang, the Standard Model of particle physics, quantum mechanics, and classical physics. These hypotheses and models don’t fully answer every question about how the universe came to be or continues to persist – which is why scientists are always investigating other ideas, such as supersymmetry or string theory.

The holographic universe principle is part of string theory – or at least not inconsistent with it – and goes something like this: From our zoomed out vantage point, the universe seems to be a perfectly formed enclave of 4D spacetime. But what happens if you keep zooming in, past the atomic and subatomic, until you get down to the smallest possible unit that can exist in the universe?

fermi_holometer-3In explaining their theory, the scientists involved make much of the analogy of moving closer to an old-style TV until you can see the individual pixels. The holographic principle suggests that, if you zoom in far enough, we will eventually see the pixels of the universe. It’s theorized that these universal pixels are about 10 trillion trillion times smaller than an atom (where things are measured in Planck units).

The Holometer at Fermilab, which on the hunt for these pixels of the universe, is essentially an incredibly accurate clock. It consists of a twin-laser interferometer, which – as the name suggests – extracts information from the universe by measuring interference to the laser beams. Each interferometer directs a one-kilowatt laser beam at a beam splitter and then down two 40-m (130-ft) arms located at right-angles to one another.

holometer-interferometer-diagramThese beams are then reflected back towards the source, where they are combined and analyzed for any traces of interference. As Craig Hogan, the developer of the holographic noise theory and a director at Fermilab, explained:

We want to find out whether space-time is a quantum system just like matter is. If we see something, it will completely change ideas about space we’ve used for thousands of years.

After any outside influences are removed, any remaining fluctuations – measured by slightly different frequencies or arrival times – could be caused by the ever-so-slight quantum jitter of these universal pixels. If these universal pixels exist, then everything we see, feel, and experience in the universe is actually encoded in these 2D pixels. One major difficulty in such a test will be noise – aka. “Holographic noise” – which they expect to be present at all frequencies.

fermi_holometerTo mitigate this, the Holometer is testing at frequencies of many megahertz so that motions contained in normal matter are claimed not to be a problem. The dominant background noise of radio wave interference will be the most difficult to filter out, according to the team. As Holometer lead scientist Aaron Chou explained:

If we find a noise we can’t get rid of, we might be detecting something fundamental about nature – a noise that is intrinsic to space-time.

This would have some serious repercussions. For a start, it would mean that spacetime itself is a quantum system, just like matter. The theory that the universe consists of matter and energy would be annulled, replaced with the concept that the universe is made of information encoded into these universal pixels, which in turn create the classical concepts of matter and energy.

fermi_holometer-1And of course, if the universe is just a 3D projection from a 2D cosmological horizon, where exactly is that cosmological horizon? And does this mean that everything we know and love is just a collection of quantum information carrying 2D bits? And perhaps most importantly (from our point of view at least) what does that make us? Is all life just a collection of pixels designed to entertain some capricious audience?

All good and, if you think about it, incredibly time-honored questions. For has it not been suggested by many renowned philosophies that life is a deception, and death an escape? And do not the Hindu, Buddhist and Abrahamic religions tells us that our material existence is basically a facade that conceals our true reality? And were the ancient religions not all based on the idea that man was turned loose in a hostile world for the entertainment of the gods?

Well, could be that illusion is being broadcast in ultra-high definition! And getting back to The Big Bang Theory, here’s Leonard explaining the hologram principle to Penny, complete with holograms:


Sources:
extremetech.com, gizmag.com

New from Space: Simulations and X-Rays Point to Dark Matter

center_universe2The cosmic hunt for dark matter has been turning up some interesting clues of late. And during the month of June, two key hints came along that might provide answers; specifically simulations that look at the “local Universe” from the Big Bang to the present day and recent studies involving galaxy clusters. In both cases, the observations made point towards the existence of Dark Matter – the mysterious substance believed to make up 85 per cent of the mass of the Universe.

In the former case, the clues are the result of new supercomputer simulations that show the evolution of our “local Universe” from the Big Bang to the present day. Physicists at Durham University, who are leading the research, say their simulations could improve understanding of dark matter due to the fact that they believe that clumps of the mysterious substance – or halos – emerged from the early Universe, trapping intergalactic gas and thereby becoming the birthplaces of galaxies.

universe_expansionCosmological theory predicts that our own cosmic neighborhood should be teeming with millions of small halos, but only a few dozen small galaxies have been observed around the Milky Way. Professor Carlos Frenk, Director of Durham University’s Institute for Computational Cosmology, said:

I’ve been losing sleep over this for the last 30 years… Dark matter is the key to everything we know about galaxies, but we still don’t know its exact nature. Understanding how galaxies formed holds the key to the dark matter mystery… We know there can’t be a galaxy in every halo. The question is: ‘Why not?’.

The Durham researchers believe their simulations answer this question, showing how and why millions of halos around our galaxy and neighboring Andromeda failed to produce galaxies. They say the gas that would have made the galaxy was sterilized by the heat from the first stars that formed in the Universe and was prevented from cooling and turning into stars. However, a few halos managed to bypass this cosmic furnace by growing early and fast enough to hold on to their gas and eventually form galaxies.

dark_matterThe findings were presented at the Royal Astronomical Society’s National Astronomy Meeting in Portsmouth on Thursday, June 26. The work was funded by the UK’s Science and Technology Facilities Council (STFC) and the European Research Council. Professor Frenk, who received the Royal Astronomical Society’s top award, the Gold Medal for Astronomy, added:

We have learned that most dark matter halos are quite different from the ‘chosen few’ that are lit up by starlight. Thanks to our simulations we know that if our theories of dark matter are correct then the Universe around us should be full of halos that failed to make a galaxy. Perhaps astronomers will one day figure out a way to find them.

Lead researcher Dr Till Sawala, in the Institute for Computational Cosmology, at Durham University, said the research was the first to simulate the evolution of our “Local Group” of galaxies, including the Milky Way, Andromeda, their satellites and several isolated small galaxies, in its entirety. Dr Sawala said:

What we’ve seen in our simulations is a cosmic own goal. We already knew that the first generation of stars emitted intense radiation, heating intergalactic gas to temperatures hotter than the surface of the sun. After that, the gas is so hot that further star formation gets a lot more difficult, leaving halos with little chance to form galaxies. We were able to show that the cosmic heating was not simply a lottery with a few lucky winners. Instead, it was a rigorous selection process and only halos that grew fast enough were fit for galaxy formation.

darkmatter1The close-up look at the Local Group is part of the larger EAGLE project currently being undertaken by cosmologists at Durham University and the University of Leiden in the Netherlands. EAGLE is one of the first attempts to simulate from the beginning the formation of galaxies in a representative volume of the Universe. By peering into the virtual Universe, the researchers find galaxies that look remarkably like our own, surrounded by countless dark matter halos, only a small fraction of which contain galaxies.

The research is part of a program being conducted by the Virgo Consortium for supercomputer simulations, an international collaboration led by Durham University with partners in the UK, Germany, Holland, China and Canada. The new results on the Local Group involve, in addition to Durham University researchers, collaborators in the Universities of Victoria (Canada), Leiden (Holland), Antwerp (Belgium) and the Max Planck Institute for Astrophysics (Germany).

ESO2In the latter case, astronomers using ESA and NASA high-energy observatories have discovered another possible hint by studying galaxy clusters, the largest cosmic assemblies of matter bound together by gravity. Galaxy clusters not only contain hundreds of galaxies, but also a huge amount of hot gas filling the space between them. The gas is mainly hydrogen and, at over 10 million degrees celsius, is hot enough to emit X-rays. Traces of other elements contribute additional X-ray ‘lines’ at specific wavelengths.

Examining observations by ESA’s XMM-Newton and NASA’s Chandra spaceborne telescopes of these characteristic lines in 73 galaxy clusters, astronomers stumbled on an intriguing faint line at a wavelength where none had been seen before. The astronomers suggest that the emission may be created by the decay of an exotic type of subatomic particle known as a ‘sterile neutrino’, which is predicted but not yet detected.

dark_matter_blackholeOrdinary neutrinos are very low-mass particles that interact only rarely with matter via the so-called weak nuclear force as well as via gravity. Sterile neutrinos are thought to interact with ordinary matter through gravity alone, making them a possible candidate as dark matter. As Dr Esra Bulbul – from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, USA, and lead author of the paper discussing the results – put it:

If this strange signal had been caused by a known element present in the gas, it should have left other signals in the X-ray light at other well-known wavelengths, but none of these were recorded. So we had to look for an explanation beyond the realm of known, ordinary matter… If the interpretation of our new observations is correct, at least part of the dark matter in galaxy clusters could consist of sterile neutrinos.

The surveyed galaxy clusters lie at a wide range of distances, from more than a hundred million light-years to a few billion light-years away. The mysterious, faint signal was found by combining multiple observations of the clusters, as well as in an individual image of the Perseus cluster, a massive structure in our cosmic neighborhood.

The supermassive black hole at the center of the Milky Way galaxy.The implications of this discovery may be far-reaching, but the researchers are being cautious. Further observations with XMM-Newton, Chandra and other high-energy telescopes of more clusters are needed before the connection to dark matter can be confirmed. Norbert Schartel, ESA’s XMM-Newton Project Scientist, commented:

The discovery of these curious X-rays was possible thanks to the large XMM-Newton archive, and to the observatory’s ability to collect lots of X-rays at different wavelengths, leading to this previously undiscovered line. It would be extremely exciting to confirm that XMM-Newton helped us find the first direct sign of dark matter. We aren’t quite there yet, but we’re certainly going to learn a lot about the content of our bizarre Universe while getting there.

Much like the Higgs Boson, the existence of Dark Matter was first theorized as a way of explaining how the universe appears to have mass that we cannot see. But by looking at indirect evidence, such as the gravitational influence it has on the movements and appearance of other objects in the Universe, scientists hope to one day confirm its existence. Beyond that, there is the mystery of “Dark Energy”, the hypothetical form of energy that permeates all of space and is believed to be behind accelerations in the expansion of the universe.

As with the discovery of the Higgs Boson and the Standard Model of particle physics, detecting these two invisible forces will at last confirm that the Big Bang and Cosmological theory are scientific fact – and not just working theories. When that happens, the dream of humanity finally being able to understand the universe (at both the atomic and macro level) may finally become a reality!

Source: sciencedaily.com, (2)

The Large Hadron Collider: We’ve Definitely Found the Higgs Boson

higgs-boson1In July 2012, the CERN laboratory in Geneva, Switzerland made history when it discovered an elementary particle that behaved in a way that was consistent with the proposed Higgs boson – otherwise known as the “God Particle”. Now, some two years later, the people working the Large Hadron Collider have confirmed that what they observed was definitely the Higgs boson, the one predicted by the Standard Model of particle physics.

In the new study, published in Nature Physics, the CERN researchers indicated that the particle observed in 2012 researchers indeed decays into fermions – as predicted by the standard model of particle physics. It sits in the mass-energy region of 125 GeV, has no spin, and it can decay into a variety of lighter particles. This means that we can say with some certainty that the Higgs boson is the particle that gives other particles their mass – which is also predicted by the standard model.

CERN_higgsThis model, which is explained through quantum field theory  – itself an amalgam of quantum mechanics and Einstein’s special theory of relativity – claims that deep mathematical symmetries rule the interactions among all elementary particles. Until now, the decay modes discovered at CERN have been of a Higgs particle giving rise to two high-energy photons, or a Higgs going into two Z bosons or two W bosons.

But with the discovery of fermions, the researchers are now sure they have found the last holdout to the full and complete confirmation that the Standard Model is the correct one. As Marcus Klute of the CMS Collaboration said in a statement:

Our findings confirm the presence of the Standard Model Boson. Establishing a property of the Standard Model is big news itself.

CERN_LHCIt is certainly is big news for scientists, who can say with absolute certainty that our current conception for how particles interact and behave is not theoretical. But on the flip side, it also means we’re no closer to pushing beyond the Standard Model and into the realm of the unknown. One of the big shortfalls of the Standard Model is that it doesn’t account for gravity, dark energy and dark matter, and some other quirks that are essential to our understanding of the universe.

At present, one of the most popular theories for how these forces interact with the known aspects of our universe – i.e. electromagnetism, strong and nuclear forces – is supersymmetry.  This theory postulates that every Standard Model particle also has a superpartner that is incredibly heavy – thus accounting for the 23% of the universe that is apparently made up of dark matter. It is hoped that when the LHC turns back on in 2015 (pending upgrades) it will be able to discover these partners.

CERN_upgradeIf that doesn’t work, supersymmetry will probably have to wait for LHC’s planned successor. Known as the “Very Large Hadron Collider” (VHLC), this particle accelerator will measure some 96 km (60 mile) in length – four times as long as its predecessor. And with its proposed ability to smash protons together with a collision energy of 100 teraelectronvolts – 14 times the LHC’s current energy – it will hopefully have the power needed to answer the questions the discovery of the Higgs Boson has raised.

These will hopefully include whether or not supersymmetry holds up and how gravity interacts with the three other fundamental forces of the universe – a discovery which will finally resolve the seemingly irreconcilable theories of general relativity and quantum mechanics. At which point (and speaking entirely in metaphors) we will have gone from discovering the “God Particle” to potentially understanding the mind of God Himself.

I don’t think I’ve being melodramatic!

Source: extremetech.com, blogs.discovermagazine.com