The Future of the Classroom

virtual_learning2As an educator, technological innovation is a subject that comes up quite often. Not only are teachers expected to keep up with trends so they can adapt them into their teaching strategies, classrooms,and prepare children in how to use them, they are also forced to contend with how these trends are changing the very nature of education itself. If there was one thing we were told repeatedly in Teacher’s College, it was that times are changing, and we must change along with them.

And as history has repeatedly taught us, technological integration not only changes the way we do things, but the way we perceive things. As we come to be more and more dependent on digital devices, electronics and wireless communications to give us instant access to a staggering amount of technology, we have to be concerned with how this will effect and even erode traditional means of information transmission. After all, how can reading and lecture series’ be expected to keep kid’s attention when they are accustomed to lighting fast videos, flash media, and games?

envisioning-the-future-of-education

And let’s not forget this seminal infographic, “Envisioning the future of educational technology” by Envisioning Technology. As one of many think tanks dedicated to predicting tech-trends, they are just one of many voices that is predicting that in time, education will no longer require the classroom and perhaps even teachers, because modern communications have made the locale and the leader virtually obsolete.

Pointing to such trends as Massive Open Online Courses, several forecasters foresee a grand transformation in the not too distant future where all learning happens online and in virtual environments. These would be based around “microlearning”, moments where people access the desired information through any number of means (i.e. a google search) and educate themselves without the need for instruction or direction.

virtual_learning3The technical term for this future trend is Socialstructured Learning = an aggregation of microlearning experiences drawn from a rich ecology of content and driven not by grades but by social and intrinsic rewards. This trend may very well be the future, but the foundations of this kind of education lie far in the past. Leading philosophers of education–from Socrates to Plutarch, Rousseau to Dewey–talked about many of these ideals centuries ago. The only difference is that today, we have a host of tools to make their vision reality.

One such tool comes in the form of augmented reality displays, which are becoming more and more common thanks to devices like Google Glass, the EyeTap or the Yelp Monocle. Simply point at a location, and you are able to obtain information you want about various “points of interest”. Imagine then if you could do the same thing, but instead receive historic, artistic, demographic, environmental, architectural, and other kinds of information embedded in the real world?

virtual_learningThis is the reasoning behind projects like HyperCities, a project from USC and UCLA that layers historical information on actual city terrain. As you walk around with your cell phone, you can point to a site and see what it looked like a century ago, who lived there, what the environment was like. The Smithsonian also has a free app called Leafsnap, which allows people to identify specific strains of trees and botany by simply snapping photos of its leaves.

In many respects, it reminds me of the impact these sorts of developments are having on politics and industry as well. Consider how quickly blogging and open source information has been supplanting traditional media – like print news, tv and news radio. Not only are these traditional sources unable to supply up-to-the-minute information compared to Twitter, Facebook, and live video streams, they are subject to censorship and regulations the others are not.

Attractive blonde navigating futuristic interfaceIn terms of industry, programs like Kickstarter and Indiegogo – crowdsources, crowdfunding, and internet-based marketing – are making it possible to sponsor and fund research and development initiatives that would not have been possible a few years ago. Because of this, the traditional gatekeepers, aka. corporate sponsors, are no longer required to dictate the pace and advancement of commercial development.

In short, we are entering into a world that is becoming far more open, democratic, and chaotic. Many people fear that into this environment, someone new will step in to act as “Big Brother”, or the pace of change and the nature of the developments will somehow give certain monolithic entities complete control over our lives. Personally, I think this is an outmoded fear, and that the real threat comes from the chaos that such open control and sourcing could lead to.

Is humanity ready for democratic anarchy – aka. Demarchy (a subject I am semi-obsessed with)? Do we even have the means to behave ourselves in such a free social arrangement? Opinion varies, and history is not the best indication. Not only is it loaded with examples of bad behavior, previous generations didn’t exactly have the same means we currently do. So basically, we’re flying blind… Spooky!

Sources: fastcoexist.com, envisioningtech.com

Big News in Quantum Science!

Welcome all to my 800th post! Woot woot! I couldn’t possibly think of anything to special to write about to mark the occasion, as I seem to acknowledge far too many of these occasions. So instead I thought I’d wait for a much bigger milestone which is on the way and simply do a regular article. Hope you enjoy it, it is the 800th one I’ve written 😉

*                    *                    *

C2012 saw quite a few technical developments and firsts being made; so many in fact that I had to dedicate two full posts to them! However, one story which didn’t make many news cycles, but may prove to be no less significant, was the  advances made in the field of quantum science. In fact, the strides made in this field during the past year were the first indication that a global, quantum internet might actually be possible.

For some time now, scientists and researchers have been toying with the concept of machinery that relies on quantum mechanics. Basically, the idea revolves around “quantum teleportation”, a process where quantum states of matter, rather than matter itself, are beamed from one location to another. Currently, this involves using a high-powered laser to fire entangled photons from one location to the next. When the photons at the receiving end take on the properties of the photon sent, a quantum teleportation has occurred, a process which is faster than the speed of light since matter is not actually moving, only its properties.

quantum-teleportation-star-trails-canary-islands-1-640x353Two years ago, scientists set the record for the longest teleportation by beaming a photon some 16 km. However, last year, a team of international researchers was able to beam the properties of a photon from their lab in La Palma to another lab in Tenerife, some 143 km away. Not only was this a new record, it was significant because 143 km happens to be just far enough to reach low Earth orbit satellites, thus proving that a world-spanning quantum network could be built.

Shortly thereafter, China struck back with its own advance, conducting the first teleportation of quantum states between two rubidium atoms. Naturally, atoms are several orders larger than a quantum qubit, which qualifies them as “macroscopic objects” – i.e. visible to the naked eye. This in turn has led many to believe that large quantities of information could be teleported from one location to the next using this technique in the near future.

And then came another breakthrough from England, where researchers managed to transmit qubits and binary data down the same piece of optic fiber, which laid the groundwork for a conventional internet that runs via optic cable instead of satellites, and which could be protected using quantum cryptography, a secured means of information transfer which remains (in theory) unbreakable.

quantum_compAnd finally, the companies of IBM and the University of Southern California (USC) reported big advances in the field of quantum computing during 2012. The year began with IBM announcing that it had created a 3-qubit computer chip (video below) capable of performing controlled logic functions. USC could only manage a 2-qubit chip — but it was fashioned out of diamond (pictured at left). Both advances strongly point to a future where your PC could be either completely quantum-based, or where you have a few quantum chips to aid with specific tasks.

As it stands, quantum computing, networking, and cryptography remain in the research and development phase. IBM’s current estimates place the completion of a fully-working quantum computer at roughly ten to fifteen years away. And as it stands, the machinery needed to conduct any of these processes remains large, bulky and very expensive. But miniaturization and a drop in prices are too things you can always count on in the tech world!

^So really, we may be looking at a worldwide, quantum internet by 2025 or 2030. We’re talking about a world in which information transfers faster than the speed of light, all connections are secure, and computing happens at unheard of speeds. Sounds impressive, but the real effect of this “quantum revolution” will be the exponential rate at which progress increases. With worldwide information sharing and computing happening so much faster, we can expect further advances in every field to take less time, and breakthroughs happening on a regular basis.

Yes, this technology could very well be the harbinger of what John von Neumann called the “Technological Singularity”. I know some of you might be feeling nervous at the moment, but somewhere, Ray Kurzweil is doing a happy dance! Just a few more decades before he and others like him can start downloading their brains or getting those long-awaited cybernetic enhancements!

Source: extremetech.com