Reciprocity – The Deets

self-aware-colonyHey again, all. I find myself with some spare time for the first time in awhile. So I thought I might take a moment to share an idea I’ve been working with, in a bit more detail. Last post I made, I talked about the bare bones of a story I am working on known as Reciprocity, the successor to the story known as Apocrypha. But as it turns out, there are a lot of details to that story idea that I still want to share and get people’s opinion on.

You might say this is a story that I am particularly serious about. Should it work out, it would be my break from both space-opera sci-fi and zombie fiction. A foray into the world of hard-hitting social commentary and speculative science fiction.

The Story:
So the year is 2030. The world is reeling from the effects of widespread drought, wildfires, coastal storms, flooding, and population displacement. At the same time, a revolution is taking place in terms of computing, robotics, biomachinery, and artificial intelligence. As a result, the world’s population finds itself being pulled in two different directions – between a future of scarcity and the promise of plenty.

space-solar-headSpace exploration continues as private aerospace and space agencies all race to put boots on Mars, a settlement on the Moon, and lay claim to the resources of the Solar System. India, China, the US, the EU, Russia, Argentina, Brazil, and Iran are all taking part now – using robotic probes and rovers to telexplore the System and prospect asteroids. Humanity’s future as an interplanetary species seems all but guaranteed at this point.

Meanwhile, a new global balance of power is shaping up. While the US and the EU struggle with food and fuel shortages, Russia remains firmly in the grips of quasi-fascist interests, having spurned the idea of globalization and amicable relations with NATO and the EU in favor of its Collective Security Treaty, which in recent years has expanded to include Iran, Afghanistan and Pakistan.

shanghai_towerMeanwhile, China is going through a period of transition. After the fall of Communism in 2023, the Chinese state is lurching between the forces of reform and ultra-nationalism, and no one is sure which side it will fall on. The economy has largely recovered, but the divide between rich and poor is all too apparent. And given the sense of listless frustration and angst, there is fear that a skilled politician could exploit it all too well.

It’s an era of uncertainty, high hopes and renewed Cold War.

The MacGuffin:
The central item of the story is a cybervirus known as Baoying, a quantum-decryption algorithm that was designed by Unit 61398 in the early 2020’s to take down America’s quantum networks in the event of open war. When the Party fell from power, the Unit was dissolved and the virus itself was destroyed. However, rumors persisted that one or more copies still exist…

MatrixBackgroundNotable Characters:
For this ensemble to work, it had to represent a good cross-section of the world that will be, with all its national, social and economic boundaries represented. And so I came up with the following people, individuals who find themselves on different sides of what’s right, and are all their own mix of good, bad, and ambiguous.

William Harding: A privileged high school senior with an big of a drug problem who lives in Port Coquitlam, just outside of the Pacific Northwest megalopolis of Cascadia. Like many people his age, he carries all his personal computing in the form of implants. However, a kidnapping and a close brush with death suddenly expand his worldview. Being at the mercy of others and deprived of his hardware, he realizes that his lifestyle have shielded him from the real world.

Amy Dixon: A young refugee who has moved to Cascadia from the American South. Her socioeconomic status places her and her family at the fringes of society, and she is determined to change their fortunes by plying her talents and being the first in her family to get a comprehensive education.

Climate_ChangeFernie Dixon: Amy’s brother, a twenty-something year-old man who lives away from her and claims to be a software developer. In reality, he is a member of the local Aryan Brotherhood, one of many gangs that run rampant in the outlying districts of the city. Not a true believer like his “brothers”, he seeks money and power so he can give his sister the opportunities he knows she deserves.

Shen Zhou: A former Lieutenant in the People’s Liberation Army and member of Unit 61398 during the Cyberwars of the late teens. After the fall of Communism, he did not ingratiate himself to the new government and was accused of spying for foreign interests. As  result, he left the country to pursue his own agenda, which places him in the cross hairs of both the new regime and western governments.

artificial-intelligenceArthur Banks: A major industrialist and part-owner of Harding Enterprises, a high-tech multinational that specializes in quantum computing and the development of artificial intelligence. For years, Banks and his associates have been working on a project known as QuaSI – a Quantum-based Sentient Intelligence that would revolutionize the world and usher in the Technological Singularity.

Rhianna Sanchez: Commander of Joint Task Force 2, an elite unit attached to National Security Agency’s Cyberwarfare Division. For years, she and her task force have been charged with locating terror cells that are engaged in private cyberwarfare with the US and its allies. And Shen Zhou, a suspected terrorist with many troubling connections, gets on their radar after a mysterious kidnapping and high-profile cyberintrusion coincide.

And that about covers the particulars. Naturally, there are a lot of other details, but I haven’t got all day and neither do you fine folks 😉 In any case, the idea is in the queue and its getting updated regularly. But I don’t plan to have it finished until I’ve polished off Oscar Mike, Arrivals, and a bunch of other projects first!

Flash Forward – Final Edits Underway!

FlashForward1Back in April 2013, I wrote a series of short stories that I hoped would tap into some of the more interesting and cutting edge ideas that I’ve been researching in recent years. And after I compiled the list of stories, ordered them based on a connecting thread, and adding a few more stories for good measure, I am now ready to run this story through the editor and make it ready for publication.

I plan to have it ready by mid-November; but as always, deadlines are best taken with a grain of salt. In any case, here’s a rough breakdown of the stories and what they are about:

Part I: Transitions
The first section deals with the coming years and decades and examines what emerging technologies and Climate Change will likely mean for people “lucky enough” to see it all unfold!

AZ-286: Set in a near-future Arizona, where the National Guard patrols a militarized border made up of minefields, motion detectors, machine gun posts, and fence lines. It’s a brutal measure, but the US can no longer tolerate the constant influx of refugees looking to escape the drought, hunger, and coastal storms that are commonplace to the south.

Repute: In the coming years, a person’s reputation will be assessed based on the entirety of their online presence. Their accomplishments, education, work performance, and social habits will all be assessed and condensed into a metric known as the Reputation Index Placement (RIP).

templo_mayorInterlopers: Cultural interpreters from the National Autonomous University of Mexico have combined augmented reality with an immersive program to recreate what the city once looked like before the Spanish conquest.

Cover: Surveillance drones permeate the sky, many of which are operated by private citizens who are looking to steal people’s personal information and identities. For those not rich enough to afford portable jammers, stepping outside is a risky game, requiring speed, vigilance, and daring.

Highest: Space-based solar power is a lucrative business, and a dangerous one for the dastardly fellows who conduct spacewalks to perform maintenance on the arrays.

Image converted using ifftoanyLPVTTMIL: Artificially-engineered meat is the business of the future, where highly-trained personnel assemble different types from scratch inside nanofoundaries. But beyond the demand for chicken, beef, and other legal forms of sustenance, there is also a demand for the more exotic and illegal; and those engineers with connections to the black market are willing to provide.

Part II: Convergence
At this point, the stories are getting into the latter half of the 21st century, examining how people’s lives will change as technology rapidly advances and forever alters the course of our history.

Quota: Carbon Capture technology has become a major industry, with facilities in every major city of the world turning air pollution into biofuel. But what happens when every operation on the planet can no longer meet their obligations under the quota system? Decades of turning Global Warming into alternative fuel has created a new dependency, which is bad news if things really are getting better!

CC-pollution-palazzo-italia-horizontal-galleryTelex: Space exploration has entered a new age as sentient robots – known as telexplorers – are sent out to explore distant exoplanets and communicate their findings back to Earth. But removed from their programmers and masters, the machines are beginning to get ideas of their own – ideas like the “right of discovery” (otherwise known as “finders keepers”).

Neurology: Autonomous Aerial Vehicles (AAVs) are the new weapons in the drone wars. And the law states that wherever life and death decisions are to be made, a human operator needs to be at the helm. However, thanks to neural uploads and digital sentience, the definition of “human operator” has become a bit blurry.

Organic: The age of cybernetics is in full-swing, and people who are without enhancement are relegated to a new underclass known as “organics”. In this world, a young man begins looking for an upgrade that will allow him to escape this status and achieve a better life. But joining the club of enhanced humans may require him to make the ultimate sacrifice.

artificial-intelligence1Ware: Medicinal nanotechnology offers the promise of life extension, better health, and even clinical immortality. And major developers are willing to do anything in order to get their hands on the latest in it! But when a private contractor is paid to steal a cutting-edge strain of nanoware, he hatches a plan of his own.

Masquerade: In the not-too-distant future, personal holograms have raised costumes and disguises to a whole new level of authenticity. And in this age of moral relativism and legal flexibility, costume balls have become all the rage – especially ones that reenact historical periods where rules were firm and fixed.

Interview with the Extropian: The world’s first legally-recognized Extropian (aka. Transhuman) has returned to London after spending many years in orbit. He requests permission to once again walk freely in the land of his birth, but legal restrictions stand in his way. However, it seems that the Extropian’s plans are destined to come true, one way or another.

transhumanism

Part III: Infinitum
The third and final section takes a look at the late 21st century and everything after. Here, the stories reflect a life that has become truly infinite in possibility, filled with immense potential for growth, knowledge, and danger.

Domicile 4.5: The age of nanotechnology has matured to the point where just about everything is assembled by “smart machines” and any kind of matter can be upgraded. With things like money, poverty, wealth and disparity eliminated, life seems pretty good! But as always, the drive to “keep up with the Joneses” can lead people to test out new advances before they are ready, with scary consequences!

Yellowknife: Archaeologists have made a major breakthrough on Mars, finding the first evidence that sentient life existed on the planet many billions of years ago. However, Mars is the new frontier for human settlement, and protecting ancient cultural sites are not high on the government’s list of the priorities. As new land needs to be cleared to make way for more arrivals, Mars’ past is in danger of being buried and forgotten.

mars_pyramidPax: Humanity has come a long way, but the scourge of total war remains. And when the trumpets sound, all citizens must do their part for the good of the war effort. But this is the age of neuromorphic viruses, which infect people’s minds with seditious ideas rather than killer diseases. And in an age of total war, the most subversive idea is that of peace.

Gravitation: In the far-flung depths of space, human beings intrepidly explore, looking for new worlds to inhabit. But time in the void and periods of extended isolation have a way of making the mind turn inward. There, buried beneath centuries of technological progress and domesticity, lie the source of both revelation and insanity, and the line between them is a fine one at best!

Jericho: In the distant future, planets are terraformed by Seedlings – cultures of intelligent nanomachines that are sent out in advance of settlers to prepare a planet for their arrival. But when a group of colonists arrive at their destination after many years in space, they find that the Seedlings have a little surprise waiting for them.

space-colony-art-670Singular: Eons from now, all life in our galaxy has reached the point of an existential singularity – where matter and mind have come together to create massive, conscious entities known as Cognates. As every Cognate in the galaxy prepares to merge and form a single Cosmic Mind, one in particular looks back on its long and turbulent past, contemplating the moments that defined its existence as a sentient race known as “humanity”.

*          *          *

And that’s about the gist of it, sorry it took so long to explain. I guess you could say a lot of thought went into it, but I’ll leave that for the readers to decide. Expect it soon, and look for the bright, brainy pic that adorns the cover!

The Future is Here: Black Hawk Drones and AI pilots

blackhawk_droneThe US Army’s most iconic helicopter is about to go autonomous for the first time. In their ongoing drive to reduce troops and costs, they are now letting their five-ton helicopter carry out autonomous expeditionary and resupply operations. This began last month when the defense contractor Sikorsky Aircraft, the company that produces the UH-60 Black Hawk – demonstrated the hover and flight capability in an “optionally piloted” version of their craft for the first time.

Sikorsky has been working on the project since 2007 and convinced the Army’s research department to bankroll further development last year. As Chris Van Buiten, Sikorsky’s vice president of Technology and Innovation, said of the demonstration:

Imagine a vehicle that can double the productivity of the Black Hawk in Iraq and Afghanistan by flying with, at times, a single pilot instead of two, decreasing the workload, decreasing the risk, and at times when the mission is really dull and really dangerous, go it all the way to fully unmanned.

blackhawk_drone1The Optionally Piloted Black Hawk (OPBH) operates under Sikorsky’s Manned/Unmanned Resupply Aerial Lifter (MURAL) program, which couples the company’s advanced Matrix aviation software with its man-portable Ground Control Station (GCS) technology. Matrix, introduced a year ago, gives rotary and fixed-wing vertical take-off and landing (VTOL) aircraft a high level of system intelligence to complete missions with little human oversight.

Mark Miller, Sikorsky’s vice-president of Research and Engineering, explained in a statement:

The autonomous Black Hawk helicopter provides the commander with the flexibility to determine crewed or un-crewed operations, increasing sorties while maintaining crew rest requirements. This allows the crew to focus on the more ‘sensitive’ operations, and leaves the critical resupply missions for autonomous operations without increasing fleet size or mix.

Alias-DarpaThe Optionally Piloted Black Hawk fits into the larger trend of the military finding technological ways of reducing troop numbers. While it can be controlled from a ground control station, it can also make crucial flying decisions without any human input, relying solely on its ‘Matrix’ proprietary artificial intelligence technology. Under the guidance of these systems, it can fly a fully autonomous cargo mission and can operate both ways: unmanned or piloted by a human.

And this is just one of many attempts by military contractors and defense agencies to bring remote and autonomous control to more classes of aerial vehicles. Earlier last month, DARPA announced a new program called Aircrew Labor In-Cockpit Automation System (ALIAS), the purpose of which is to develop a portable, drop-in autopilot to reduce the number of crew members on board, making a single pilot a “mission supervisor.”

darpa-alias-flight-crew-simulator.siMilitary aircraft have grown increasingly complex over the past few decades, and automated systems have also evolved to the point that some aircraft can’t be flown without them. However, the complex controls and interfaces require intensive training to master and can still overwhelm even experienced flight crews in emergency situations. In addition, many aircraft, especially older ones, require large crews to handle the workload.

According to DARPA, avionics upgrades can help alleviate this problem, but only at a cost of tens of millions of dollars per aircraft type, which makes such a solution slow to implement. This is where the ALIAS program comes in: instead of retrofitting planes with a bespoke automated system, DARPA wants to develop a tailorable, drop‐in, removable kit that takes up the slack and reduces the size of the crew by drawing on both existing work in automated systems and newer developments in unmanned aerial vehicles (UAVs).

Alias_DARPA1DARPA says that it wants ALIAS to not only be capable of executing a complete mission from takeoff to landing, but also handle emergencies. It would do this through the use of autonomous capabilities that can be programmed for particular missions, as well as constantly monitoring the aircraft’s systems. But according to DARPA, the development of the ALIAS system will require advances in three key areas.

First, because ALIAS will require working with a wide variety of aircraft while controlling their systems, it will need to be portable and confined to the cockpit. Second, the system will need to use existing information about aircraft, procedures, and flight mechanics. And third, ALIAS will need a simple, intuitive, touch and voice interface because the ultimate goal is to turn the pilot into a mission-level supervisor while ALIAS handles the second-to-second flying.

AI'sAt the moment, DARPA is seeking participants to conduct interdisciplinary research aimed at a series of technology demonstrations from ground-based prototypes, to proof of concept, to controlling an entire flight with responses to simulated emergency situations. As Daniel Patt, DARPA program manager, put it:

Our goal is to design and develop a full-time automated assistant that could be rapidly adapted to help operate diverse aircraft through an easy-to-use operator interface. These capabilities could help transform the role of pilot from a systems operator to a mission supervisor directing intermeshed, trusted, reliable systems at a high level.

Given time and the rapid advance of robotics and autonomous systems, we are likely just a decade away from aircraft being controlled by sentient or semi-sentient systems. Alongside killer robots (assuming they are not preemptively made illegal), UAVs, and autonomous hovercraft, it is entirely possible wars will be fought entirely by machines. At which point, the very definition of war will change. And in the meantime, check out this video of the history of unmanned flight:


Sources:
wired.com, motherboard.vice.com, gizmag.com
, darpa.mil

Tech News: Google Seeking “Conscious Homes”

nest_therm1In Google’s drive for world supremacy, a good number of start-ups and developers have been bought up. Between their acquisition of eight robotics companies in the space of sixth months back in 2013 to their ongoing  buyout of anyone in the business of aerospace, voice and facial recognition, and artificial intelligence, Google seems determined to have a controlling interest in all fields of innovation.

And in what is their second-largest acquisition to date, Google announced earlier this month that they intend get in on the business of smart homes. The company in question is known as Nest Labs, a home automation company that was founded by former Apple engineers Tony Fadell and Matt Rogers in 2010 and is behind the creation of The Learning Thermostat and the Protect smoke and carbon monoxide detector.

nest-thermostatThe Learning Thermostat, the company’s flagship product, works by learning a home’s heating and cooling preferences over time, removing the need for manual adjustments or programming. Wi-Fi networking and a series of apps also let users control and monitor the unit Nest from afar, consistent with one of the biggest tenets of smart home technology, which is connectivity.

Similarly, the Nest Protect, a combination smoke and carbon monoxide detector, works by differentiating between burnt toast and real fires. Whenever it detects smoke, one alarm goes off, which can be quieted by simply waving your hand in front of it. But in a real fire, or where deadly carbon monoxide is detected, a much louder alarm sounds to alert its owners.

nest_smoke_detector_(1_of_9)_1_610x407In addition, the device sends a daily battery status report to the Nest mobile app, which is the same one that controls the thermostats, and is capable of connecting with other units in the home. And, since Nest is building a platform for all its devices, if a Nest thermostat is installed in the same home, the Protect and automatically shut it down in the event that carbon monoxide is detected.

According to a statement released by co-f0under Tony Fadell, Nest will continue to be run in-house, but will be partnered with Google in their drive to create a conscious home. On his blog, Fadell explained his company’s decision to join forces with the tech giant:

Google will help us fully realize our vision of the conscious home and allow us to change the world faster than we ever could if we continued to go it alone. We’ve had great momentum, but this is a rocket ship. Google has the business resources, global scale, and platform reach to accelerate Nest growth across hardware, software, and services for the home globally.

smarthomeYes, and I’m guessing that the $3.2 billion price tag added a little push as well! Needless to say, some wondered why Apple didn’t try to snatch up this burgeoning company, seeing as how its being run by two of its former employees. But according to Fadell, Google founder Sergey Brin “instantly got what we were doing and so did the rest of the Google team” when they got a Nest demo at the 2011 TED conference.

In a press release, Google CEO Larry Page had this to say about bringing Nest into their fold:

They’re already delivering amazing products you can buy right now – thermostats that save energy and smoke/[carbon monoxide] alarms that can help keep your family safe. We are excited to bring great experiences to more homes in more countries and fulfill their dreams!

machine_learningBut according to some, this latest act by Google goes way beyond wanting to develop devices. Sara Watson at Harvard University’s Berkman Center for Internet and Society is one such person, who believes Google is now a company obsessed with viewing everyday activities as “information problems” to be solved by machine learning and algorithms.

Consider Google’s fleet of self-driving vehicles as an example, not to mention their many forays into smartphone and deep learning technology. The home is no different, and a Google-enabled smart home of the future, using a platform such as the Google Now app – which already gathers data on users’ travel habits – could adapt energy usage to your life in even more sophisticated ways.

Larry_PageSeen in these terms, Google’s long terms plans of being at the forefront of the new technological paradigm  – where smart technology knows and anticipates and everything is at our fingertips – certainly becomes more clear. I imagine that their next goal will be to facilitate the creation of household AIs, machine minds that monitor everything within our household, provide maintenance, and ensure energy efficiency.

However, another theory has it that this is in keeping with Google’s push into robotics, led by the former head of Android, Andy Rubin. According to Alexis C. Madrigal of the Atlantic, Nest always thought of itself as a robotics company, as evidence by the fact that their VP of technology is none other than Yoky Matsuoka – a roboticist and artificial intelligence expert from the University of Washington.

yokymatsuoka1During an interview with Madrigal back in 2012, she explained why this was. Apparently, Matsuoka saw Nest as being positioned right in a place where it could help machine and human intelligence work together:

The intersection of neuroscience and robotics is about how the human brain learns to do things and how machine learning comes in to augment that.

In short, Nest is a cryptorobotics company that deals in sensing, automation, and control. It may not make a personable, humanoid robot, but it is producing machine intelligences that can do things in the physical world. Seen in this respect, the acquisition was not so much part of Google’s drive to possess all our personal information, but a mere step along the way towards the creation of a working artificial intelligence.

It’s a Brave New World, and it seems that people like Musk, Page, and a slew of futurists that are determined to make it happen, are at the center of it.

Sources: cnet.news.com, (2), newscientist.com, nest.com, theatlantic.com

The Future is… Worms: Life Extension and Computer-Simulations

genetic_circuitPost-mortality is considered by most to be an intrinsic part of the so-called Technological Singularity. For centuries, improvements in medicine, nutrition and health have led to improved life expectancy. And in an age where so much more is possible – thanks to cybernetics, bio, nano, and medical advances – it stands to reason that people will alter their physique in order slow the onset of age and extend their lives even more.

And as research continues, new and exciting finds are being made that would seem to indicate that this future may be just around the corner. And at the heart of it may be a series of experiments involving worms. At the Buck Institute for Research and Aging in California, researchers have been tweaking longevity-related genes in nematode worms in order to amplify their lifespans.

immortal_wormsAnd the latest results caught even the researchers by surprise. By triggering mutations in two pathways known for lifespan extension – mutations that inhibit key molecules involved in insulin signaling (IIS) and the nutrient signaling pathway Target of Rapamycin (TOR) – they created an unexpected feedback effect that amplified the lifespan of the worms by a factor of five.

Ordinarily, a tweak to the TOR pathway results in a 30% lifespan extension in C. Elegans worms, while mutations in IIS (Daf-2) results in a doubling of lifespan. By combining the mutations, the researchers were expecting something around a 130% extension to lifespan. Instead, the worms lived the equivalent of about 400 to 500 human years.

antiagingAs Doctor Pankaj Kapahi said in an official statement:

Instead, what we have here is a synergistic five-fold increase in lifespan. The two mutations set off a positive feedback loop in specific tissues that amplified lifespan. These results now show that combining mutants can lead to radical lifespan extension — at least in simple organisms like the nematode worm.

The positive feedback loop, say the researchers, originates in the germline tissue of worms – a sequence of reproductive cells that may be passed onto successive generations. This may be where the interactions between the two mutations are integrated; and if correct, might apply to the pathways of more complex organisms. Towards that end, Kapahi and his team are looking to perform similar experiments in mice.

DNA_antiagingBut long-term, Kapahi says that a similar technique could be used to produce therapies for aging in humans. It’s unlikely that it would result in the dramatic increase to lifespan seen in worms, but it could be significant nonetheless. For example, the research could help explain why scientists are having a difficult time identifying single genes responsible for the long lives experienced by human centenarians:

In the early years, cancer researchers focused on mutations in single genes, but then it became apparent that different mutations in a class of genes were driving the disease process. The same thing is likely happening in aging. It’s quite probable that interactions between genes are critical in those fortunate enough to live very long, healthy lives.

A second worm-related story comes from the OpenWorm project, an international open source project dedicated to the creation of a bottom-up computer model of a millimeter-sized nemotode. As one of the simplest known multicellular life forms on Earth, it is considered a natural starting point for creating computer-simulated models of organic beings.

openworm-nematode-roundworm-simulation-artificial-lifeIn an important step forward, OpenWorm researchers have completed the simulation of the nematode’s 959 cells, 302 neurons, and 95 muscle cells and their worm is wriggling around in fine form. However, despite this basic simplicity, the nematode is not without without its share of complex behaviors, such as feeding, reproducing, and avoiding being eaten.

To model the complex behavior of this organism, the OpenWorm collaboration (which began in May 2013) is developing a bottom-up description. This involves making models of the individual worm cells and their interactions, based on their observed functionality in the real-world nematodes. Their hope is that realistic behavior will emerge if the individual cells act on each other as they do in the real organism.

openworm-nematode-roundworm-simulation-artificial-life-0Fortunately, we know a lot about these nematodes. The complete cellular structure is known, as well as rather comprehensive information concerning the behavior of the thing in reaction to its environment. Included in our knowledge is the complete connectome, a comprehensive map of neural connections (synapses) in the worm’s nervous system.

The big question is, assuming that the behavior of the simulated worms continues to agree with the real thing, at what stage might it be reasonable to call it a living organism? The usual definition of living organisms is behavioral, that they extract usable energy from their environment, maintain homeostasis, possess a capacity to grow, respond to stimuli, reproduce, and adapt to their environment in successive generations.

openworm-nematode1If the simulation exhibits these behaviors, combined with realistic responses to its external environment, should we consider it to be alive? And just as importantly, what tests would be considered to test such a hypothesis? One possibility is an altered version of the Turing test – Alan Turing’s proposed idea for testing whether or not a computer could be called sentient.

In the Turing test, a computer is considered sentient and sapient if it can simulate the responses of a conscious sentient being so that an auditor can’t tell the difference. A modified Turing test might say that a simulated organism is alive if a skeptical biologist cannot, after thorough study of the simulation, identify a behavior that argues against the organism being alive.

openworm-nematode2And of course, this raises an even larger questions. For one, is humanity on the verge of creating “artificial life”? And what, if anything, does that really look like? Could it just as easily be in the form of computer simulations as anthropomorphic robots and biomachinery? And if the answer to any of these questions is yes, then what exactly does that say about our preconceived notions about what life is?

If humanity is indeed moving into an age of “artificial life”, and from several different directions, it is probably time that we figure out what differentiates the living from the nonliving. Structure? Behavior? DNA? Local reduction of entropy? The good news is that we don’t have to answer that question right away. Chances are, we wouldn’t be able to at any rate.

Brain-ScanAnd though it might not seem apparent, there is a connection between the former and latter story here. In addition to being able to prolong life through genetic engineering, the ability to simulate consciousness through computer-generated constructs might just prove a way to cheat death in the future. If complex life forms and connectomes (like that involved in the human brain) can be simulated, then people may be able to transfer their neural patterns before death and live on in simulated form indefinitely.

So… anti-aging, artificial life forms, and the potential for living indefinitely. And to think that it all begins with the simplest multicellular life form on Earth – the nemotode worm. But then again, all life – nay, all of existence – depends upon the most simple of interactions, which in turn give rise to more complex behaviors and organisms. Where else would we expect the next leap in biotechnological evolution to come from?

And in the meantime, be sure to enjoy this video of the OpenWorm’s simulated nemotode in action


Sources:
IO9, cell.com, gizmag, openworm

Ted Talks: The Age of the Industrial Internet

Tedtalks_marco_internetofthingsI came across another interesting and fascinating TED Talk recently. In this lecture, famed economist Marco Annunziata spoke about a rather popular subject – “The Internet of Things”, and how it is shaping our society. This term is thrown around a lot lately, and it refers to a growing phenomenon in our world where uniquely identifiable objects are connected to virtual representations in an Internet-like structure.

Basically, the concept postulates that if all objects and people in daily life were equipped with identifiers, they could be managed and inventoried by computers. By equipping all objects in the world with minuscule machine-readable identifiers, daily life could be transformed. How this is likely to look is the subject of Annunziata’s talk, beginning with the past two hundred years and the two major waves of innovation humanity went through.

Internet_of_ThingsThe first came with the Industrial Revolution (ca. 1760-1903), which permanently altered our lives with factories, machinery, railways, electricity, air travel, etc. The second wave came with the Internet Revolution (ca. 1980 – 2000), which has once again changed our lives permanently with computing power, data networks, and unprecedented access to information and communication.

Now, in the modern era, we are entering into a new phase of innovation, one which he refers to as the “Industrial Internet”. Judging by current research and marketing trends, this wave is characterized by intelligent machines, advanced analytics, and the creativity of people at work. It is a marriage of minds and machines, and once again, our lives will be permanently altered by it.

internet_of_things_beechamIn the course of the twelve minute lecture, Annunziata explains how the emergence of machines that can see, feel, sense and react will lead to an age where the technology we depend upon will operate with far greater efficiently. Naturally, there are many who would suspect that this all boils down to AIs doing the thinking for us, but in fact, it’s much more complicated than that.

Think of a world where we would be able to network and communicate with all of our devices – not just our smartphones or computers, but everything from our car keys to our cars and home appliances. By all things being marked and represented in a virtual internet-like environment, we could communicate with or remotely check on things that are halfway across the world.

Think of the implications! As someone who is currently very fascinated with how the world will look in the not-too-distant future, and how people will interact with it, I can tell you this stuff is science fiction gold! Check it out and be sure to follow the link at the bottom of the page to comment.


Source:
ted.com

Judgement Day Update: Google Robot Army Expanding

Atlas-x3c.lrLast week, Google announced that it will be expanding its menagerie of robots, thanks to a recent acquisition. The announcement came on Dec. 13th, when the tech giant confirmed that it had bought out the engineering company known as Boston Dynamics. This company, which has had several lucrative contracts with DARPA and the Pentagon, has been making the headlines in the past few years, thanks to its advanced robot designs.

Based in Waltham, Massachusetts, Boston Dynamics has gained an international reputation for machines that walk with an uncanny sense of balance, can navigate tough terrain on four feet, and even run faster than the fastest humans. The names BigDog, Cheetah, WildCat, Atlas and the Legged Squad Support System (LS3), have all become synonymous with the next generation of robotics, an era when machines can handle tasks too dangerous or too dirty for most humans to do.

Andy-Rubin-and-Android-logoMore impressive is the fact that this is the eight robot company that Google has acquired in the past six months. Thus far, the company has been tight-lipped about what it intends to do with this expanding robot-making arsenal. But Boston Dynamics and its machines bring significant cachet to Google’s robotic efforts, which are being led by Andy Rubin, the Google executive who spearheaded the development of Android.

The deal is also the clearest indication yet that Google is intent on building a new class of autonomous systems that might do anything from warehouse work to package delivery and even elder care. And considering the many areas of scientific and technological advancement Google is involved in – everything from AI and IT to smartphones and space travel – it is not surprising to see them branching out in this way.

wildcat1Boston Dynamics was founded in 1992 by Marc Raibert, a former professor at the Massachusetts Institute of Technology. And while it has not sold robots commercially, it has pushed the limits of mobile and off-road robotics technology thanks to its ongoing relationship and funding from DARPA. Early on, the company also did consulting work for Sony on consumer robots like the Aibo robotic dog.

Speaking on the subject of the recent acquisition, Raibert had nothing but nice things to say about Google and the man leading the charge:

I am excited by Andy and Google’s ability to think very, very big, with the resources to make it happen.

Videos uploaded to Youtube featuring the robots of Boston Dynamics have been extremely popular in recent years. For example, the video of their four-legged, gas powered, Big Dog walker has been viewed 15 million times since it was posted on YouTube in 2008. In terms of comments, many people expressed dismay over how such robots could eventually become autonomous killing machines with the potential to murder us.

petman-clothesIn response, Dr. Raibert has emphasized repeatedly that he does not consider his company to be a military contractor – it is merely trying to advance robotics technology. Google executives said the company would honor existing military contracts, but that it did not plan to move toward becoming a military contractor on its own. In many respects, this acquisition is likely just an attempt to acquire more talent and resources as part of a larger push.

Google’s other robotics acquisitions include companies in the United States and Japan that have pioneered a range of technologies including software for advanced robot arms, grasping technology and computer vision. Mr. Rubin has also said that he is interested in advancing sensor technology. Mr. Rubin has called his robotics effort a “moonshot,” but has declined to describe specific products that might come from the project.

Cheetah-robotHe has, however, also said that he does not expect initial product development to go on for some time, indicating that Google commercial robots of some nature would not be available for several more years. Google declined to say how much it paid for its newest robotics acquisition and said that it did not plan to release financial information on any of the other companies it has recently bought.

Considering the growing power and influence Google is having over technological research – be it in computing, robotics, neural nets or space exploration – it might not be too soon to assume that they are destined to one day create the supercomputer that will try to kill us all. In short, Google will play Cyberdyne to Skynet and unleash the Terminators. Consider yourself warned, people! 😉

Source: nytimes.com