New Video: Quantum Entanglement Explained

quantum-entanglement1If you’re like most people, the concept of quantum entanglements confuses and perplexes you. But considering its important to quantum science, the future of computing and (maybe, just maybe) space travel, it’s something we should all strive to understand. Luckily, this educational video produced by PHD Comics, and narrated by physicists Jeff Kimble and Chen-Lung Hung, explains it in easy-to-understand terms.

To break it down succinctly, quantum entanglement is the unusual behavior where elementary particles become linked so that when something happens to one, something happens to the other; no matter how far apart they are. This bizarre behavior of particles that become inextricably linked together is what Einstein supposedly called “spooky action at a distance.”

Understanding how this works may very well unlock the mysteries of the universe, shedding light on the unusual behavior of black holes, how gravity interacts with the other fundamental forces and yielding a Grand Unifying Theory/Theory of Everything (TOE)- and even let us circumvent “natural” barriers like the speed of light. So enjoy the video, and be sure to listen carefully. Simplified or not, this is still some pretty heavy stuff!


Source: universetoday.com

The Future of Physics: Entanglements and Wormholes

worm_holeQuantum entanglements are one of the most bizarre aspects of quantum physics, so much so that Albert Einstein himself referred to it as “spooky action at a distance.” Basically, the concept involves two particles with each occupying multiple states at once. Until such time as one is measured, neither has a definite state, causing the other particle to instantly assume a corresponding state, even if they reside on opposite ends of the universe.

But what enables particles to communicate instantaneously – and seemingly faster than the speed of light – over such vast distances? Earlier this year, physicists proposed an answer in the form of “wormholes,” or gravitational tunnels. The group showed that by creating two entangled black holes, then pulling them apart, they formed a wormhole connecting the distant black holes.

quantum-entanglement1Now an MIT physicist has found that, looked at through the lens of string theory, the creation of two entangled quarks — the very building blocks of matter — simultaneously gives rise to a wormhole connecting the pair. The theoretical results bolster the relatively new and exciting idea that the laws of gravity that hold the universe together may not be fundamental, but may arise from quantum entanglement themselves.

Julian Sonner, a senior postdoc at MIT’s Laboratory for Nuclear Science and Center for Theoretical Physics, published the results of his study in the journal Physical Review Letters, where it appears together with a related paper by Kristan Jensen of the University of Victoria and Andreas Karch of the University of Washington. Already, the theory is causing quite the buzz for scientists and fans of sci-fi who would like to believe FTL is still possible.

quantum_field_theoryThis is certainly good news for scientists looking to resolve the fundamental nature of the universe by seeing how its discernible laws fit together. Ever since quantum mechanics was first proposed more than a century ago, the main challenge for physicists has been to explain how it correlates to gravity. While quantum mechanics works extremely well at describing how things work on the microscopic level, it remains incompatible with general relativity.

For years, physicists have tried to come up with a theory that can marry the two fields. This has ranged from proposing the existence of a subatomic particle known as the “graviton” or “dilaton”, to various Grand Unifying Theories – aka. Theory of Everything (TOE) – such as Superstring Theory, Loop Quantum Gravity, and other theoretical models to explain the interaction. But so far, none have proven successful.

gravity_well_cartography_2_by_lordsong-d5lrxwsA theory of quantum gravity would suggest that classical gravity is not a fundamental concept, as Einstein first proposed, but rather emerges from a more basic, quantum-based phenomenon. In a macroscopic context, this would mean that the universe is shaped by something more fundamental than the forces of gravity. This is where quantum entanglement could play a role.

Naturally, there is a problem with this idea. Two entangled particles, “communicating” across vast distances, would have to do so at speeds faster than that of light — a violation of the laws of physics, according to Einstein. In July, physicists Juan Maldacena of the Institute for Advanced Study and Leonard Susskind of Stanford University proposed a theoretical solution in the form of two entangled black holes.

big bang_blackholeWhen the black holes were entangled, then pulled apart, the theorists found that what emerged was a wormhole – a tunnel through space-time that is thought to be held together by gravity. The idea seemed to suggest that, in the case of wormholes, gravity emerges from the more fundamental phenomenon of entangled black holes. Following up on work by Jensen and Karch, Sonner has sought to tackle this idea at the level of quarks.

To see what emerges from two entangled quarks, he first generated entangled quarks using the Schwinger effect — a concept in quantum theory that enables one to create particles out of nothing. Sonner then mapped the entangled quarks onto a four-dimensional space, considered a representation of space-time. In contrast, gravity is thought to exist in the fifth dimension. According to Einstein’s laws, it acts to “bend” and shape space-time.

black_holeTo see what geometry may emerge in the fifth dimension from entangled quarks in the fourth, Sonner employed holographic duality, a concept in string theory. While a hologram is a two-dimensional object, it contains all the information necessary to represent a three-dimensional view. Essentially, holographic duality is a way to derive a more complex dimension from the next lowest dimension.

Using holographic duality, Sonner derived the entangled quarks, and found that what emerged was a wormhole connecting the two, implying that the creation of quarks simultaneously creates a wormhole between them. More fundamentally, the results suggest that gravity itself may emerge from quantum entanglement. On top of all that, the geometry, or bending, of the universe as described by classical gravity, may also be a consequence of entanglement.

quantum-entanglement3As Sonner put it in his report, the results are a theoretical explanation for a problem that has dogged scientists who quite some time:

There are some hard questions of quantum gravity we still don’t understand, and we’ve been banging our heads against these problems for a long time. We need to find the right inroads to understanding these questions… It’s the most basic representation yet that we have where entanglement gives rise to some sort of geometry. What happens if some of this entanglement is lost, and what happens to the geometry? There are many roads that can be pursued, and in that sense, this work can turn out to be very helpful.

Granted, the idea of riding wormholes so that we, as humans, can travel from one location in space to another is still very much science fiction, knowing that there may very well be a sound, scientific basis for their existence is good news for anyone who believes we will be able to “jump” around the universe in the near to distant future. I used to be one of them, now… I think I might just be a believer again!

USS_Enterprise_caught_in_artificial_wormhole-640x272Sources: web.mit.edu, extremetech.com

The Amplituhedron: Quantum Physics Decoded

amplutihedron_spanScientists recently made a major breakthrough that may completely alter our perceptions of quantum physics, and the nature of the universe itself. After many decades of trying to reformulate quantum field theory, scientists at Harvard University discovered of a jewel-like geometric object that they believe will not only simplify quantum science, but even challenge the notion that space and time are fundamental components of reality.

This jewel has been named the “amplituhedron”, and it is radically simplifying how physicists calculate particle interactions. Previously, these Interactions were calculated using quantum field theory – mathematical formulas that were thousands of terms long. Now, these interactions can be described by computing the volume of the corresponding amplituhedron, which yields an equivalent one-term expression.

theory_of_everythingJacob Bourjaily, a theoretical physicist at Harvard University and one of the researchers who developed the new idea, has this to say about the discovery:

The degree of efficiency is mind-boggling. You can easily do, on paper, computations that were infeasible even with a computer before.

This is exciting news, in part because it could help facilitate the search for a Grand Unifying Theory (aka. Theory of Everything) that manages to unify all the fundamental forces of the universe. These forces are electromagnetism, weak nuclear forces, strong nuclear forces, and gravity. Thus far, attempts at resolving these forces have run into infinities and deep paradoxes.

gravityWhereas the field of quantum physics has been able to account for the first three, gravity has remained explainable only in terms of General Relativity (Einstein’s baby). As a result, scientists have been unable to see how the basic forces of the universe interact on a grand scale, and all attempts have resulted in endless infinities and deep paradoxes.

The amplituhedron, or a similar geometric object, could help by removing two deeply rooted principles of physics: locality and unitarity. Locality is the notion that particles can interact only from adjoining positions in space and time, while unitarity holds that the probabilities of all possible outcomes of a quantum mechanical interaction must add up to one.

quantum_field_theoryThe concepts are the central pillars of quantum field theory in its original form, but in certain situations involving gravity, both break down, suggesting neither is a fundamental aspect of nature. As Nima Arkani-Hamed – a professor of physics at the Institute for Advanced Study in Princeton, N.J. and the lead author of the new work – put it: “Both are hard-wired in the usual way we think about things. Both are suspect.”

In keeping with this idea, the new geometric approach to particle interactions removes locality and unitarity from its starting assumptions. The amplituhedron is not built out of space-time and probabilities; these properties merely arise as consequences of the jewel’s geometry. The usual picture of space and time, and particles moving around in them, is a construct.

Photon_follow8And while the amplituhedron itself does not describe gravity, Arkani-Hamed and his collaborators think there might be a related geometric object that does. Its properties would make it clear why particles appear to exist, and why they appear to move in three dimensions of space and to change over time. This is because, as Bourjaily put it:

[W]e know that ultimately, we need to find a theory that doesn’t have [unitarity and locality]. It’s a starting point to ultimately describing a quantum theory of gravity.

Imagine that. After decades of mind-boggling research and attempts at resolving the theoretical issues, all existence comes down to a small jewel-shaped structure. I imagine the Intelligent Design people will have a field day with this, and I can foresee it making it into the new season of Big Bang Theory as well. Breakthroughs like this always do seem to have a ripple effect…

Source: simonsfoundation.org

Higgs Boson Confirmed!

CERN_tunnelIn July of 2012, scientists working for the CERN Laboratory in Geneva, Switzerland announced that they believed they had found the elusive “God Particle” – aka. the Higgs Boson. In addition to ending a decades-long search, the discovery also solved one of the greatest riddles of the universe, confirming the Standard Model of particle physics and shedding light on how the universe itself came to be.

But of course, this discovery needed to be confirmed before the scientific community could accept its existence as fact. The announcement made in July indicated that what the CERN scientists had found appeared to be the Higgs Boson, in that it fit the characteristics of the hypothetical subatomic particle. But as of last Thursday, they claimed that they are now quite certain that this is what they observed.

CERNJoe Incandela, a physicist who heads one of the two main teams at CERN (both made up of over 3000 individuals) claimed that: “To me it is clear that we are dealing with a Higgs boson, though we still have a long way to go to know what kind of Higgs boson it is”. In essence, he and his staff believe that may be several types of Higgs to be found, each of which behaves a little differently.

This was no small challenge, as the Higgs will only make an appearance once in every trillion collisions. Originally theorized in 1964 by British physicist Peter Higgs to explain why matter has mass, it has long been suspected that the Higgs stood alone, explaining how the six “flavors” of quarks, six types of leptons, and twelve gauge bosons, interact. Now, it may be the case that there are several, each of which moves differently and are responsible for different functions.

Higgs-bosonAnd of course, there are several larger mysteries that remain to be solved, which the discovery of the Higgs is expected to shed light on. These include why gravity is so weak, what the dark matter is that is believed to make up a large part of the total mass in the universe, and just how all the major forces of the universe work together to define this thing we know as reality.

These include gravity, weak and strong nuclear forces, and electromagnetism. The Theory of Relativity explains how gravity works, while Quantum Theory explains the other three. What has been missing for some time is a “Grand Unifying Theory”, something which could explain how these two theories could co-exist and account for all the basic forces of the universe.

If we can do that, we will have accomplished what Stephen Hawking has dreamed of for some time, and in effect be one step closer to what he described as: “understanding the mind of God”.

Source: nytimes.com

Of Faster-Than-Light Travel

It’s a popular concept, the fictional technology that could help us break that tricky light barrier. And it’s not hard to see why. The universe is a really, really, REALLY big place! And if we ever want to begin exploring and colonizing our tiny corner of it – and not have to deal with all the relativistic effects of time dilation and long, long waits – we better find a way to move faster.

And this is where various franchises come up with their more creative take on physics and the natural universe. Others, they just present it as a given and avoid any difficult, farfetched, or clumsy explanations. And in the end, we the viewers go along because we know that without it, space travel is going to be one long, tedious, and mind-bendingly complex journey!

Alcubierre Drive:
Proposed by Miguel Alcubierre as a way of resolving Einstein’s field equations, the Alcubierre Drive is an untested by possible way to achieve FTL travel. As opposed to Warp, Foldspace, or most other proposed means of FTL that involve some kind of internal propulsion of jump drive, the Alcubierre Drive is based on the idea of generating a wave that a ship would then “surf” in order to travel.

The creation of this wave would cause the fabric of space ahead of the spacecraft to contract and the space behind it to expand. The ship would then ride this wave inside a region of flat space known as a warp bubble and be carried along as the region itself moves through space. As a result, conventional relativistic effects such as time dilation would not apply in the same way as if the ship itself were moving.

The Alcubierre drive is featured in a few different science fiction genres, mainly those of the “hard” variety. This includes Stephen Baxter’s Ark, M. John Harrison’s novel Light, Warren Ellis and Colleen Doran’s Orbiter, and Ian Douglas’s Star Carrier where it is the primary means of transport.

FTL Drive:
The primary means of interstellar travel in the Battlestar Galactica universe, where every ship larger than a in-system transport is equipped with an FTL drive. How it works is never really explained, but it is clear that the technology is complex and involves a great deal of calculation. This is not only to ensureolve n accurate relocation through space-time, but also to make sure they don’t up jumping too close to a planet, star, or worse, right in the middle of either.

Whereas Colonial ships use their own computers to calculate jumps, Cylon ships rely on the Hybrid. These “machines” are essentially semi-organic computers, and represent the first step in Cylon evolution from pure machines to organic beings. Apparently, the hybrids were more sophisticated than Colonial computers, especially the aging Galactica. Hence, they were able to calculate jumps more quickly and accurately.

Holtzman Drive:
This FTL drive system comes to us from the Dune universe, and is otherwise known as a “Foldspace Engine”. Relying on principles that are not entirely clear to those in the Dune universe, the system involves depositing a ship from one point in space-time to another instantaneously. Though the workings of the drive are never really explained, it is intimated in Chapterhouse: Dune that tachyons are involved.

Another key component in the system is a Guild Navigator, a mutant who has been given natural prescient abilities thanks to constant exposure to spice. Using this prescience, the Navigator “sees” a path through space-time in order to guide the ship safely through. But in time, the Ixians invented a machine that was capable of doing this job as well, thus making the entire process automated and breaking the Guild’s monopoly on spacing.

Hyperspace:
Like the Warp drive, the terms hyperspace and hyperdrive have become staples withing the science fiction community. It’s most popular usage comes from Star Wars where it is the principle means of interstellar travel. Though it is never explained how a hyperdrive works, it is made abundantly clear through a series of visuals in the first and subsequent movies that it involves speeds in excess of the speed of light.

In addition, Han Solo indicated in the original movie that the Falcon’s top speed was “point five past light-speed”, indicating that it can travel 1.5 c. All other references to hyperspace speed factors in the franchise are similar, with velocities given in terms of a decimal point value. As a fast ship, the Falcon can reach point five, whereas most of the larger Imperial and Rebel ships can make only point three or four at most.

Though Star Wars is the most popular example of hyperspace, it is by no means the earliest. The first recorded example was in John Campbell’s “Islands of Space,” which appeared in Amazing Stories in 1931. Arthur C. Clarke’s also mentioned hyperspace in his 1950 story Technical Error. However, the most enduring example comes from Asimov’s Foundation universe, where hyperspace is the principal means of travel in the Galactic Republic. In I, Robot, the invention of the “hyperspatial drive” is the basis of one of the short stories, and was meant to provide a sense of continuity with his earlier Foundation series.

Other franchises that feature the concept of hyperspace include Babylon 5, Homeworld, Macross/Robotech, and Stargate. Combined with Star Wars and the Foundation series, it is the most popular – albeit the most ill-defined -form of FTL in the realm of science fiction.

Infinite Probability Drive:
The perfect mixture of irreverence and science: the Infinite Probability Drive from The Hitchhikers Guide to the Galaxy. This FTL concept is based on a particular perception of quantum theory which states that a subatomic particle is most likely to be in a particular place, such as near the nucleus of an atom, but there is also a small probability of it being found very far from its point of origin.

Thus, a body could travel from place to place without passing through the intervening space if you had sufficient control of probability. According to the Guide, in this way the drive “passes through every conceivable point in every conceivable universe almost simultaneously,” meaning the traveller is “never sure where they’ll end up or even what species they’ll be when they get there” and therefore it’s important to dress accordingly!

Subspace Jump Drive:
Here we have an FTL concept which comes from one of my favorite games of all time, Descent Freespace. Subspace jumps, relying on the drive system of the same name, represent a very quick method of interstellar travel. By relying on subspace “corridors” that run from one point in space-time to another, a ship is able to move quickly from one star system to the next.

The only drawback to this concept is the fact that travel must occur along officially designated “nodes”. These nodes usually pass between large gravitational sources (i.e. between stars systems) but also can exist within a system itself. Virtually all nodes are unstable, existing for mere seconds or minutes at a time. However, nodes which will last for centuries or longer are designated as “stable” and used for transit.

Another favorite franchise which uses a similar concept is the Wing Commander universe. In all versions of the game, particularly Wing Commander: Privateer, interstellar travel comes down to plotting jumps from predesignated points in space. One cannot simply jump from one spot to another provided accurate calculations are made, they have to use the mapped out points or no jump is possible. This, as opposed to hyperspace travel, posits that subspace is a reality that exists only in certain areas of space-time and must be explored before it can be used.

TARDIS:
Officially, the Time and Relative Dimension in Space is a time machine and spacecraft that comes to us from British science fiction television program Doctor Who and its associated spin-offs. Produced by the advanced race known as the Time Lords, an extraterrestrial civilization to which the Doctor belongs, this device that makes his adventures possible.

Basically, a TARDIS gives its pilot the ability to travel to any point in time and any place in the universe. Based on a form of biotechnology which is grown, not assembled, they draw their power primarily from an artificial singularity (i.e. a black hole) known as the “Eye of Harmony”. Other sources of fuel include mercury, specialized crystals and a form of temporal energy.

Each TARDIS is primed with the biological imprint of a Time Lord so that only they can use it. Should anyone else try to commandeer one, it undergoes molecular disintegration and is lots. The interior of a TARDIS is much larger than its exterior, which can blend in with its surroundings using the ship’s “chameleon circuit”. Hence why it appears to outsiders as a phone booth in the series.

Warp Drive:
Possibly the best known form of FTL travel which comes to us from the original Star Trek and its many spinoffs. In addition to being a prime example of fictional FTL travel, it is also perhaps the best explained example.Though said explanation has evolved over time, with contributions being made in the original series, TNG, and the Star Trek technical manual, the basic concept remains the same.

By using a matter/antimatter reactor to create plasma, and by sending this plasma through warp coils, a ship is able to create a warp bubble that will move the craft into subspace and hence exceed the speed of light. Later explanations would go on to add that an anti-matter/matter reaction which powers the two separate nacelles of the ship are what create the displacement field (the aforementioned “bubble”) that allows for warp.

Apparently, Warp 10 is the threshold for warp speed, meaning that it is the point at which a ship reaches infinite speed. Though several mentions are made of ships exceeding this threshold, this was later explained as being the result of different scales. Officially, it is part of the Star Trek canon that no ship is capable of exceeding Warp 10 without outside help. When that occurs, extreme time dilation, such as anti-time, occurs, which can be disastrous for the crew!

In addition to Star Trek, several other franchises have made mention of the Warp Drive. This includes StarCraft, Mass Effect, Starship Troopers, and Doctor Who.

Final Thoughts:
Having looked through all these examples, several things become clear. In fact, it puts me in mind of a clip produced by the Space Network many years ago. Essentially, Space explored the differences between FTL in past and present franchises, connecting them to developments in real science. Whereas Warp and Hyperspace tended to be the earliest examples, based on the idea of simply exceeding the speed of light, thereby breaking the law of physics, later ideas focused on the idea of circumventing them. This required that writers come up with fictional ideas that either relied on astrophysics and quantum theory or exploited the holes within them.

One such way was to use the idea of “wormholes” in space-time, a hypothetical theory that suggests that space is permeated by topological holes that could act as “shortcuts” through space-time. A similar theory is that of subspace, a fictional universe where the normal rules of physics do not apply. Finally, and also in the same vein, is the concept of a controlled singularity, an artificial black hole that can open a rift through space-time and allow a ship to pass from one point in the universe to another.

Explanations as to how these systems would work remains entirely hypothetical and based on shaky science. As always, the purpose here is to allow for interstellar travel and communications that doesn’t take decades or even centuries. Whether or not the physics of it all works is besides the point. Which brings me to two tentative conclusions.

  1. Explanations Need Not Apply: Given the implausible (or at the very least, inexplicable) nature of most FTL concepts, the best sci-fi is likely to be the stuff that doesn’t seek to explain how its FTL system of choice works. I’st simply there and does the job. People hit a button, push a lever, do some calculations, or fly into a jump gate. Then boom! seconds later (or days and weeks) and they find themselves on the other side, light years away and ready to do their mission!
  2. That’s Hard: Given how any story that involves relativistic space travel, where both time dilation and confusing time jumps are necessarily incorporated into the story, only the hardest of hard sci-fi can ever expect to do without warp drives, hyperspace, jump or FTL drives. Any other kind of sci-fi that is looking to be accessible, and therefore commercially successful, will have to involve some kind of FTL or face extinction.

Well, that’s all I got for the time being. In the meantime, keep your eyes on the skies and don’t stop dreaming about how we’re one day going to get out there. For even if we start sending ships beyond our solar system in the near future, it’s going to be well into the distant future before they get anywhere and we start hearing back from them. At least until someone figures out how to get around Einstein’s Theory of Relativity, damn bloody genius! Until then, I’d like to sign off with a tagline:

This has been Matt Williams with another conceptual post. Good night, and happy spacing!

Cryptonomicon

Having covered Snow Crash and Diamond Age awhile back, I thought it was time to move on to the third installment in my Neal Stephenson series. Today, for consideration, the historic techno-thriller Cryptonomicon! This story took me close to a year to read, in part due to interruptions, but also because the book is pretty freaking dense! However, the read was not only enjoyable and informative, it was also pretty poignant. As a historian and a sci-fi buff, there was plenty there for me to enjoy and learn from. And for those who enjoy techno-thrillers and dissertations on mathematics, this book is also a page turner! Little wonder then why this novel was dubbed the “ultimate geek novel”.

The name is derived from H.P. Lovecraft’s Necronomicon, a fictitious book that has been referenced numerous times in western literature and pop culture. The name is indicative of the book’s main theme, cryptology, as well as the unofficial manual used by cryptologists during and after World War II. In addition to featuring fictionalized versions of real events, it is also chock-full of fictionalized personalities drawn from history. They include Alan Turing, Albert Einstein, Douglas MacArthur, Winston Churchill, Isoroku Yamamoto, Karl Dönitz, and Ronald Reagan, as well as some highly technical and detailed descriptions of modern cryptography and information security, with discussions of prime numbers, modular arithmetic, and Van Eck phreaking.

Unlike his other novels, Cryptonomicon was much more akin to historical fiction and techno-thriller than actual sci-fi, mainly because its narratives take place in the past and present day. However, this is a bit of an arbitrary designation. As most fans of science fiction know, a story need not take place in the future in order to explore the kinds of themes common to the genre. And really, all science fiction is actually about the time period in which it is written, and actively draws on the past to create a picture of the future. So putting aside the question of where it falls in the literary spectrum for now, allow me to delve into this bad boy and what was good about it!

Synopsis:
The story contains four intertwining plotlines, three of which are set in the Second World War, and a fourth which takes in the late 90’s. The first follows the exploits of a man named Bobby Shaftoe, a decorated Marine who has just survived the battle of Gaudacanal and is being transferred to the OSS’s counterintelligence division. The second follows Lawrence Pritchard Waterhouse, a mathematician and cryptologist working for the joint American and British cryptology unit 2702. This work involves breaking German codes and leads him to several interesting encounters with famous people. including Albert Einstein and Alan Turing. The third involves a Japanese man named Goto Dengo, an Imperial Army officer and a mining engineer who becomes involved in a a secret Axis project to bury looted gold in the Philippines. The fourth and final perspective which takes place in the 90’s centers on Randy Lawrence Waterhouse, an expert programmer working for an IT company (Epiphyte) that is been doing business in the Philippines.

As the story develops, we see Shaftoe become marooned in Finland where he meets up with some unlikely compatriots. The first is a Catholic priest and physician named Enoch Root, who is attached to 2702, while the second is a Kriegsmarine Captain named Günter Bischoff, who is the commanding officer of an experimental rocket-propelled U-Boat. We learn that an alliance has formed between these individuals, mainly because Bischoff, who became marooned in Finland with the rest of them, has learned that the Kriegsmarine has been given the task of smuggling gold to Japan in order to buy their continued cooperation in the war. He and the others decide to work together to get their hands on some, and soon find themselves back in the Philippines. Before the war, Shaftoe had a sweetheart there named Glory, who he has not seen since the Japanese invaded, and whom he is eager to get back to.

Meanwhile, Waterhouse is bounced around the globe in his efforts to break the Axis’ codes. First, he is sent to a fictional island in the English Channel known as Qwghlm (pronounced ???). On this island, the people wear incredibly thick wool sweaters and speak a language that is loosely related to Gaelic, and incredibly hard to understand. He is then sent off to Brisbane, Australia, to work on breaking the Japanese’s codes. While there, he finds a community of Qwghlmians, who he learns are serving as operators for the British. Whereas the US had their “Wind Talkers”, Navaho signal officers who used their native languages to confuse Japanese listeners, the British had Qwghlmians. Here, he falls in love with, and eventually marries, a young woman named Mary cCmndhd.

At the same time, Goto Dengo is nearly drowned when his troop ship is sunk in the South Pacific. He narrowly survives and drifts to an island where he is forced to survive amidst squalor, decay, and a group of Japanese soldiers who are pillaging and raping amongst the natives. In time, he is found by his fellow officers and is sent to the Philippines where he is put to work on the construction of a series of underground caverns. The purpose of these caves is to store the vast amounts of looted gold which is being shipped from Germany since the Germans are now losing the war and fear being overrun. After many years, the caves are completed and the Americans invade, during which time Dengo is reunited with Shaftoe. Having reenlisted with the Marines, Bobby was sent ahead to organize the resistance, and has learned that he has a son. After convincing Dengo to surrender and defect, he heads off for what turns out to be his final mission. Meanwhile, the sub carrying Gunter Bischoff and a hoarded supply of gold runs aground in the Philippines and the crew drown.

Fast forward to 1997, we come to meet Lawrence Waterhouse as he begins his work in the Philippines. Ostensibly, this involves selling Pinoy-grams to migrant Filipinos, a sort of fiber-optic communication system that allows migrants to speak with family instantaneously. However, he soon learns that his friend and CEO of Epiphyte, Avi Halaby, is interested in using this stream of capital to fund the building of a data haven in the nearby (and fictional) island of Kinakuta. At this point, his job description changes to surveying the laying of the underwater fiber optic cables that will run from the Philippines to Kinakuta, a job which leads him to enlists the help of a Vietnam veteran and mariner named Douglas MacArthur Shaftoe and his daughter, America “Amy” Shaftoe. These people, we quickly learn, are the son and granddaughter of Bobby Shaftoe. In addition, on the island of Kinakuta, the company that is contracted to build the underground facility that will house the haven is run by a Japanese man named Goto Furudenendu, who just happens to be the son of Goto Dengo.

Over time, there plans to create a haven free of repression and scrutiny comes under fire from various quarters. At this point, Amy and Doug begin to help Lawrence and his company find an alternative source of revenue – a hidden cache of gold rumored to be at the bottom of a Philippine harbor. They find the gold and have the money they need, but in the course of it, they also uncover the plot involving detachment 2702, the Japanese, the Nazis, and an unbreakable code named Arethusa. This discovery makes them more enemies, people who want the gold for themselves, or just revenge, and things start to get dicey! However, through this they also get to meet an aged Goto Dengo, CEO of the construction company and man who buried the gold. He agrees to show them where the cache is hidden so that it can be repatriated; and with his help, they find it, Randy and Amy get together, the haven is built, and just about everyone lives happily ever after!

Strengths:
From the description alone, I’m thinking people will assume that this story was dense, well-conceived and came together quite nicely. And they would be right!  One thing that is immediately clear about it is how well Stephenson weaves past and present together to create a grand narrative that is chock-full of suspense, intrigue and history. This last element is especially prevalent. I can’t tell you how many historical cameos made it into the novel. Through the character of Randy Waterhouse, Albert Einstein and Alan Turing make an appearance. Through his German counterpart, Rudy von Hacklheber, Hermann Goering makes several. Gunter Bischoff, though he never meets Karl Doenitz in the story, repeatedly references him since it he whom he is blackmailing and gets all his orders from! And through Bobby Shaftoe and Goto Dengo, Douglas MacArthur and Isoroku Yamamoto are also woven into the story.

In addition, the way he brings past and present together is done masterfully through his main characters, all of whom are apparently related. Lawrence Waterhouse is the son of Randy Waterhouse and Mary cCmndhd, Doug and Amy are the and granddaughter of Bobby Shaftoe respectively, and Furudenendu is the son of Goto. Hell, even Lawrence ex-girlfriend ends up shacking up with the son of a character in the story! In this way, the sense of connection between past and present is made more clear, as is the sense that destiny or some kind of long-term plan is being fulfilled. The evolution between cryptology and modern computing, how one grew out of the other, is also made abundantly clear.

Weaknesses:
As more than one critic observed, this book tends to appeal to the techno geeks in the crowd. In fact, that aspect of the novel can be quite oppressive at times. In several parts, the descriptions of mathematical concepts as they apply to various things (even the everyday), can go on and on and on. Two examples come to mind: the equation Randy comes up with to describe the rotation of a bicycle wheel, and the section where Lawrence and his peers are conducting some Van-Eck phreaking email surveillance. I mean really, page after page after page of inane detail! I got that the intent was to be comical in the sheer geekiness of it all, but for the non-geeky, the only way to survive these sections was to skip ahead or just keep reading and pray there was a point in there somewhere. Other than that, the sheer length of the book can feel somewhat stifling, which is why it took me a few months to finish it.

However, this book goes far beyond the mere technical. History buffs, fans of sci-fi and people who just plain like a good, complex and interwoven story will find something to enjoy here. Not only was it a good read, it previewed Stephenson’s ability to combine historical fiction and sci-fi, something he would reprise with the Baroque Cycle trilogy and the more recent Mongoliad, all of which I have yet to read! However, one thing at a time. I have yet to finish Anathem, and I’ve been eyeing Readme with keen interest lately…