Climate Crisis: Bigger Storm Waves and Glacier Collapse

glacier collapseClimate Change is a multifaceted issue, which is due to the fact that there is no single consequence that takes precedence over the others. However, one undeniable consequence is the effect rising sea levels will have, thanks to rising temperatures and melting polar ice caps. Unfortunately, a new paper from Eric Rignot at NASA’s Jet Propulsion Laboratory  claims that some glaciers in West Antarctica “have passed the point of no return”.

A section of glaciers along West Antarctica’s coastline on the Amundsen Sea was previously predicted to be solid enough to last thousands of years. However, the JPL report finds that the ice will continue to slip into the water and melt much faster than expected. These massive glaciers are releasing tremendous amounts of water each year, nearly the equivalent of the entire Greenland Ice Sheet. When they are gone, they will have increased sea-level by about 1.2 meters (4 feet).

NOAA_sea_level_trend_1993_2010Rignot and his team came to this conclusion after analyzing three critical factors of glacier stability: slope of the terrain, flow rate, and the amount of the glacier floating in the water. Flow rate was the topic of a paper Rignot’s team published previously in Geophysical Research Letters where they determined the flow rate of these Antarctic glaciers has increased over the last few decades. The current paper discusses the slope and how much of the glacier is actually floating on seawater.

The conclusion he and his team came to were quite dire. As he summarized it in a recent press conference:

The collapse of this sector of West Antarctica appears to be unstoppable. The fact that the retreat is happening simultaneously over a large sector suggests it was triggered by a common cause, such as an increase in the amount of ocean heat beneath the floating sections of the glaciers. At this point, the end of this sector appears to be inevitable.

rising_sea_levelsAnother recent study, which appeared last month in the journal Nature, addressed another major problem threatening the polar ice caps. This study, which was compiled by researchers from the National Institute of Water and Atmospheric Research and The University of Newcastle, found that ocean waves that are whipped up by storms hundreds or even thousands of miles away from Earth’s poles, could play a bigger role in breaking up polar sea ice and thus contributing to its melt more than had been thought.

According to the study, these waves penetrate further into the fields of sea ice around Antarctica than current models suggest, and that bigger waves might be more common near the ice edges at both poles as climate change alters wind patterns. Incorporating this information into models could help scientists better predict the patterns of retreat and expansion seen in the sea ice in both Antarctica and the Arctic — patterns that are at least partly related to the effects of climate change — the researchers say.

glacier_collapseSea ice, as its name would suggest, frozen ocean water is, and therefore differs from icebergs, glaciers and their floating tongues called ice shelves – all of which originate on land. Sea ice grows in the winter months, and wanes as summer’s warmth causes it to melt. The amount of ice present can influence the movement of ocean currents — on average, about 9.7 million square miles of the ocean is covered with sea ice, according to the U.S. National Snow and Ice Data Center (NSIDC).

Researchers in Australia and New Zealand wanted to see how the action of big waves — defined as those with a height of at least 3 meters (about 10 feet) — might play a role in influencing the patterns of retreat and expansion, and if they could help improve the reliability of sea ice models. Prior to this study, no one had measured the propagation of large waves through sea ice before because the sea ice is in some of the most remote regions on the planet, and icebreaker ships must be used to plow through the thick ice.

Live blog on Artic sea ice : Sea Ice MinimumTo conduct their research, Alison Kohout – of New Zealand’s National Institute of Water and Atmospheric Research and the lead author on the study – went on a two-month ocean voyage with her colleagues to drop five buoys onto the sea ice that could measure the waves as they passed. It is thought that the ice behaves elastically as the waves pass through, bending with the wave peaks and troughs, weakening, and eventually breaking.

What the team found was that the big waves weren’t losing energy as quickly as smaller waves, allowing them to penetrate much deeper into the ice field and break up the ice there. That exposes more of the ice to the ocean, potentially causing more rapid melting and pushing back the edge of the sea ice. The researchers also compared observed positions of the sea ice edge with modeled wave heights in the Southern Ocean from 1997 to 2009 and found a good match between the waves and the patterns of retreat and expansions.

NASA_arctic-antarctic-2012Essentially, more big waves matched increased rates of sea ice retreat and vice versa. And while they believe that this might be able to help researchers understand this regional variability around Antarctica, Kohout and other researchers agree that more work needs to be done to fully understand how waves might be influencing sea ice. Kohout and her colleagues are planning another expedition in a couple of years. and it is hoped that subsequent studies will help identify the relationship with larger ice floes as well as the Arctic.

One thing remains clear though: as we move into the second and third decade of the 21st century, a much clearer picture of how anthropogenic climate change is effecting our environment and creating feedback mechanisms is likely to resolve itself. One can only hope that this is the result of in-depth research and not from the worst coming to pass! It is also clear that it is at the poles of the planet, where virtually no human beings exist, that the clearest signs of human agency are at work.

And be sure to check out this video from NASA’s Jet Propulsion Laboratory that illustrates the decline of glaciers in Western Antarctica:



Climate Crisis: Where are the Bees Going?

bee_pollen_macroOne of the greatest threats to our planetary ecosystem is the threat of bees going extinct, a phenomenon that is often filed under the heading of Colony Collapse Disorder (CCD). Because of their role in pollination, bees are an integral part of the environment, and their disappearance would mean the sudden collapse of all life on the planet in just a few years time.

Because of this, environmentalists and entomologists are looking for ways to address the disappearance of bees. One solution, as put forward by a team of Australian scientists working in Tasmania, is to outfit bees with tiny microchip trackers to monitor their movements. By turning them into an army of mobile data-collectors, the team hopes to determine why the local bees are abandoning their hives.

bee_chipsFor the past five months, this team has been capturing hundreds of bees, refrigerating them, shaving them, and gluing tiny sensors – which weigh about 1/4000th of a paperclip – to their backs. So far, the team has captured, tagged and released hundred bees, but the team plans to engineer a total of 5000 with these chips for the sake of their research.

Dr. Paulo de Souza, the lead scientist on the project, explained the capture and tagging process as follows:

The bees are very sensitive to temperature. We take the bees to the lab in a cage, we put them in a fridge with temps around 5 degrees Celsius, and in five minutes, all the bees fall asleep, because their metabolism goes down. We rub a bit of glue on them, and then attach the sensor. We carry them back, and in five minutes the bees wake up again.

colony_collapse_disorderBy monitoring their behavior, the scientists are trying to prevent Colony Collapse Disorder, the mysterious phenomenon in which worker bees suddenly abandon their hives. As it stands, no one is entirely sure what causes CCD, but  biological diversity, diet, management of the hives, radiation, and pesticide use are all possible influences on the bees’ behavior.

Colony Collapse Disorder remains a mystery that not only effects bees, but entire industries. If bees don’t pollinate fruit crops well enough, production decreases, prices rise, and local ecosystems can collapse. Tasmania, who’s huge agricultural tracts accounts for 65% of all Australian crop exports, could be devastated. Hence why de Souza and his colleagues are using it as a testing ground for their research.

bee_chips1In addition to monitoring the bees movements and checking in with them via RFID readers installed near hives and feeding stations, they’ve also created an experiment which exposes some bees to environmental contaminants (like pesticides) where other hives remain pesticide-free. By examining the effect on bees’ movements, they’ll be able to determine which factors cause bee disorientation and abnormal behavior.

As DeSouza explains it, the tagging and tracking process works a lot like a swipe card:

When you go to your office, you swipe a card to gain access. We assign different numbers to the devices on the bees, so we have 5,000 of these micro-sensors with one specific number. We follow not only the swarm, but each of the individuals to see what they’re doing.

colony_collapse_disorder1The scientists will also be able to examine bee data through several generations within the hive. When the contaminated pollen turns to nectar, other bees within the hive feed on it, and pass contamination on to their offspring. To de Souza’s knowledge, this is the first time scientists have attempted to measure hive contamination on this scale.

Right now, their main goal is to understand CCD before it reaches Australia’s shores and effects its agricultural operations. But the research is expected to have far-reaching implications, helping to address a major ecological concern that effects the entire world. And in the long run, de Souza and his team are looking to refine the process and take it even further.

HoneyBeesOnYellowFlowersThis includes adding more features to the chips and applying them to other species of crucial and threatened insects. Key to this, says de Souza, is miniaturization:

As the chips go down in size, we’ll also be able to use this in other insects. Fruit flies, for example, are another insect incredibly important for biosecurity in Australia.

An interesting concept, isn’t it? Big data meets entomology meets ecology, and all for the sake of preserving a crucial part of the food industry and an integral part of our environment. Because ultimately, its not just about preventing colonies from collapsing, but the Earth’s ecosystems as well.