Guest Post By Maria Ramos: How “Cli-Fi” Comments on Energy Crisis, Climate Change, and Overpopulation

Guest Post By Maria Ramos: How “Cli-Fi” Comments on Energy Crisis, Climate Change, and Overpopulation

Welcome back Maria Ramos! Today, she would like to talk to you all about another aspect of the science fiction landscape – a lesser-known subgenre known as “cli-fi”. Embracing dystopian narratives and speculative fiction that looks at the future through the lens of environmentalism and climate change, cli-fi is very similar to other sub-genres of science fiction. In the end, its all about cautionary tales and agitating for change. But I’ll let her explain it, as she’s better at this sort of thing!


Dystopian fiction has always provided a means of commenting on and critiquing the political and social statuses of the eras they were created in. From George Orwell’s 1984 and Animal Farm to the more recent P.D. James’ The Children of Men and Kazuo Ishiguro’s Never Let Me Go, the fiction changed with the prevalent issues of the times, from the cold war and communism to concerns over reproductive rights. Throughout the genre the fear of too much government control over some or all aspects of our lives has remained a central theme. More recently, focuses have turned to nature and the negative effect that humanity has on the environment.

While existing for decades, the recent upsurge in dystopian fiction has taken a turn into the newly coined sub genre of “cli-fi” or climate change fiction, which depicts current and very valid concerns over environmental, overpopulation, and global warming issues. Much of this fiction also targets a young adult audience. Perhaps this is to encourage the next generation of scientists and technology experts to work with the current generation in seeking solutions for our environmental issues. Such problems include a steady increase of the amount of carbon dioxide in our atmosphere since 2007, creating what the National Oceanic and Atmospheric Administration (NOAA) has reported are the highest levels in 650,000 years. Some cli-fi books even tackle this very issue head on.

Climate_Change

Two of the best-known examples of young adult cli-fi are The Hunger Games trilogy and The Maze Runner trilogy, both with blockbuster movie counterparts. In each of these, the characters live in a world depleted of natural resources because of some sort of man-made, or at least man-assisted, environmental disaster. While The Hunger Games doesn’t provide the specifics of what caused the world to become Panem, it’s clear that a central government controls the limited resources that are left while the general population struggles. While criticized for ignoring such issues as racial tensions, it nonetheless ticks the boxes of government excess leading to suffering for the general populace.

In The Maze Runner, the cause for the world’s destruction is more specifically attributed to solar flares, which devastated the majority of the planet and left the few survivors destitute. Further government meddling then caused many of those survivors to degenerate into a crazed and animalistic existence in which they tear each other apart. While neither of these trilogies, nor many of the other works of cli-fi, provide solid solutions for fixing the world once it’s gotten to the post-apocalyptic point of the stories, they remind us that consequences will remain devastating if we do nothing now.

The term “cli-fi” is popularly attributed to Dan Bloom in 2008, but nonetheless can define works of fiction created as early as the mid-20th century. Before there was such a term, authors such as J.G. Ballard were producing works of fiction describing a post-apocalyptic world caused by the effects of global warming, works such The Wind from Nowhere in 1961, The Drowning World in 1962, and The Burning World in 1964. Describing different worlds ravaged by hurricane-force winds, melting polar ice caps, and worldwide drought, respectively, such works provide early warning of the ravaging effects of global warming if left unchecked.

oryx_and_crake

More recent examples that existed before 2008 include the first novel of Margaret Atwood’s MaddAddam trilogy, Oryx and Crake, written in 2003. Set closer to the present, this trilogy delves into the possible detrimental effects of biotechnology on both the environment and on the human inhabitants of the planet. It also takes aim at multinational corporations that ignore and/or deny their role in global warming and environmental disasters, alluding to real issues faced by today’s environmentalists worldwide. Other examples of more adult-oriented dystopian novels that address the possibility of environmental catastrophes include The Road, the excellent post-oil-crisis novel The Windup Girl, and The Children of Men.

Whether the rise in recent works of cli-fi is having any effect on our actions toward being more environmentally responsible or not, artists and writers have always found ways to provide commentary through entertainment. In the case of saving our planet, any means of getting the message across is welcome and necessary.

Good News Everyone!

good_news_farnsworthHello all! I know it’s been forever since I posted last, and of course that has had everything to do with the fact that I’ve been rather busy. Somehow, having a day job and two writing jobs really cuts into your blogging and personal writing time. But I felt I should log in today and let everybody know that, due to some fortuitous circumstances, you’ll be hearing even less from me in the coming months!

Well, probably not less, more like the exact same amount. And the reason for this is… I got a new job! For months now I have been in contact with an old friend of mine in Vancouver who has created a startup dedicated to water recycling systems. Their latest proposal is a concept for a grey-water recycling toilet which, as the name suggests, turns used bathroom water into flushing water to reduce your total household expenditure.

Artist's concept of the ReFlow system in an existing bathroom.
Design concept of the ReFlow system in an existing bathroom.

Originally, I was going to profile his business and his idea for HeroX. But after some changes in their company structure, he decided to take me on as their new communications manager. So starting now, I will be the guy in charge of contacting anyone and everyone in North America who’s got a stake in water conservation and letting them know we exist. Also, I will be responsible for making sure there’s a media blitz when we choose to launch.

In a few months time, we will be crowdfunding the idea  – known as the ReFlow Green Grey-Water Recycling Toilet – and raising he money we need to make it commercially available. And I’ll also be doing a writeup about it for HeroX, just to let the design and innovation community know its out there.

Naturally, I hope that people end up hearing about it from sources other than myself. Because of course, that will mean I’ve done my job and done it right! Wish us luck, and I promise to drop in and say hello whenever I possibly can 🙂

Also, here’s the ReFlow G2R2’s concept video which explains how it works and the difference it could make:

Climate Crisis: Visualizing the Effects of Climate Change

future-summer-heat-20140709-001Climate Change means more than just on average hotter temperatures year round. There are also numerous consequences for sea levels, glaciers, weather patterns, weather stability, crop growth, fisheries, wildlife, forest fires, disease, parasites, rivers and fresh water tables. Explaining it can be a challenge, which is why visual tools like tables, maps and charts are so very useful.

Unfortunately, these too can seem bland and technocratic, and fail to capture the true extent and critical nature of Climate Change. Luckily, this past summer, a season that has been marked by uncharacteristically cool and hot temperatures, two particularly useful visual aids have been produced that seek to remedy this. By combining data-driven predictions with aids that are both personal and global in outlook, they bring the consequences of Climate Change home.

1001-blistering-summersThe first is known as 1001 Blistering Future Summers, a tool produced by the Princeton-based research and journalist organization Climate Central. This interactive map illustrates much hotter summers will become by the end of the century if nothing is done to stem global warming. Users simply type in the name of their hometown and the map compares current temperatures in their town to how high they will be and finds the geographic equivalent.

On average, according to Climate Central, daytime summer temperatures will be 4 to 6° Celsius (7 to 10° Fahrenheit) warmer across U.S. cities. That translates to most cities in the U.S. feeling like Florida or Texas feel in the summer today. For example, in the future, Boston will feel like North Miami Beach. And Las Vegas, where temperatures are projected to an average of 111 degrees, will feel more like Saudi Arabia.

dynamics_ccAs you can imagine, changes like these will have drastic effects that go far beyond scorching summers and inflated AC bills. Furthermore, when one considers the changes in a global context, and they will be disproportionately felt, they become even more disconcerting. And that is where the series of maps, collectively known as the “human dynamics of climate change”, come into play.

Developed by the U.K. Met Office (the official British weather forecast service) with the U.K. Foreign Office and several universities, they start with a “present-day” picture map – which shows trade in various commodities (wheat, maize, etc), important areas for fishing, routes for shipping and air freight, and regions with high degrees of water stress and political fragility.

dynamics_ccwThen the maps get into specific issues, based on climate forecasts for 2100 that assume that nothing will be done to stop global warming. You can see, for example, how higher temperatures could increase demand for irrigation water; how parts of the world could see increases and decreases in water run-off into rivers; how different areas are set for more flooding; and how the warmest days in Europe, parts of Asia, and North America are projected to be 6°C warmer.

The poster also has summaries for each region of the world. North Africa, for instance, “is projected to see some of the largest increases in the number of drought days and decreases in average annual water run-off.” North America, meanwhile, is forecast to see an increase in the number of drought days, increasing temperatures on its warmest days, and, depending on the region, both increases and decreases in river flooding.

climate-changeThe overall impression is one of flux, with changing temperatures also resulting in vast changes to systems that human beings heavily rely on. This is the most frightening aspect of Climate Change, since it will mean that governments around the world will be forced to cooperate extensively to adapt to changes and make do with less. And in most cases, the odds of this aren’t good.

For instance,the Indu River, a major waterway that provides Pakistan and India with extensive irrigation, originates in Pakistan. Should this country choose to board the river to get more use out of its waters, India would certainly attempt to intervene to prevent the loss of precious water flowing to their farmers down river. This scenario would very easily escalate into full-scale war, with nuclear arsenals coming into play.

climate_changetideThe Yangtze, China’s greatest river, similarly originates in territory that the country considers unstable – i.e. the Tibetan Plateau. Should water from this river prove scarcer in the future, control and repression surrounding its source is likely to increase. And when one considers that the Arab Spring was in large part motivated by food price spikes in 2010 – itself the result of Climate Change – the potential for incendiary action becomes increasingly clear.

And Europe is also likely experience significant changes due to the melting of the Greenland’s glaciers. With runoff from these glaciers bleeding into the North Atlantic, the Gulf Stream will be disrupted, resulting in Europe experiencing a string of very cold winters and dry summers. This in turn is likely to have a drastic effect on Europe’s food production, with predictable social and economic consequences.

Getting people to understand this is difficult, since most crises don’t seem real until they are upon us. However, the more we can drive home the consequences by putting into a personal, relatable format – not to mention a big-picture format – the more we can expect people to make informed choices and changes.

Sources: fastcoexist.com, (2), climatecentral.org, metoffice.gov.uk

Climate Wars: Cropland Destruction and Improvement

cereals-agriculture-earClimate Change is currently recognized as one of the greatest threats to the stability and well being of the world and its people. But far worse than rising sea levels, unpredictable weather patterns, and an increase in forest fires is the threat that it could have on the global food supply. As our population increases by several billion over the next few decades, these problems will make it even harder to feed everyone.

Up until now, predictions and projections have taken into account rising temperatures, drought, erosion, and longer growing seasons. But a recent study, produced by researchers at MIT and Colorado State University shows that air pollution is also a major factor. In their report, which was published in Nature Climate Change, they claim that ground-level ozone could exacerbate the effects on staple food crops like wheat, soybeans, maize, and rice.

crop_failureUsing two scenarios, researchers mapped out the tandem relationship between pollution and climate change. As a baseline, the MIT and Colorado State researchers estimate that climate change alone will result in a 11% decrease in global crop production. But if countries fail to substantially curb greenhouse gas emissions (the first scenario), the scientists’ model shows that air pollution could trigger an additional 4% of crop failures.

That means that barring significant changes, croplands could see a 15% drop in productivity in the next 40 years. But if countries work to decrease greenhouse gas emissions after 2040, the researchers’ model shows that reduced air pollution could actually offset other negative impacts of warming on crops. They calculate that reduced air pollution in this second scenario could actually increase yields by 3%.

Pollution over Mexico CityThe link between air quality and food production may seem a bit odd, but the logic is actually very straightforward. Basically, the atmosphere forms ozone when sunlight energizes pollutants generated from sources like cars and power plants. Ozone concentrations can also increase at higher temperatures, the kind that already wither temperature-sensitive crops like maize. On top of the heat, increased ozone levels attack pollution-sensitive crops, like wheat.

In the climate scenario where emissions decrease after 2040, the reduction in ozone alone would be enough to increase wheat production in the U.S. and China, the researchers say. Their findings show that reducing air pollution could slow the negative impacts of climate change–even enough to reverse some of them. But some regions will be negatively impacted no matter what.

trafficAs Amos Tai, one of the study’s co-authors, explained:

It appears that South Asia will be the most hard-hit by the combination of warming and ozone trends, where ozone is expected to increase even in the more optimistic scenario. African countries with low domestic production and heavily reliant on food imports are also expected to suffer more in terms of climate-pollution-driven food insecurity.

In short, food production is likely to suffer no matter what, but the effects could be confined to certain areas of the world. With proper management, and the provision of food to these regions from those that are unaffected (say, a pollution-fighting US and China), the worst could be avoided. And there’s some good news coming from another report, which claims we can further increase our food production without taxing the environment.

crop_growthAccording to a new report by researchers at the University of Minnesota’s Institute on the Environment, by focusing efforts to improve food systems on a few specific regions, crops and actions could make it possible to both meet the basic needs of three billion more people while simultaneously decreasing agriculture’s environmental carbon footprint. The report, published in Science back in July, may sound like fantasy, but the argument offered is logical and compelling.

The report focuses on 17 key crops that produce 86 percent of the world’s crop calories and account for most irrigation and fertilizer consumption. It then proposes a set of key actions in three broad areas that have the greatest potential for reducing the environmental impact of agriculture while boosting production. For each, it identifies specific “leverage points” where NGOs, foundations, governments, businesses and citizens can have the greatest impact.

agriculture_indiaThe biggest opportunities cluster in six countries – China, India, U.S., Brazil, Indonesia and Pakistan – along with Europe. As the report’s lead author Paul West, co-director of the Institute on the Environment’s Global Landscapes Initiative, explains:

This paper represents an important next step beyond previous studies that have broadly outlined strategies for sustainably feeding people. By pointing out specifically what we can do and where, it gives funders and policy makers the information they need to target their activities for the greatest good.

Overall, the report identified a number of major areas of opportunity and key leverage points for improving the efficiency and sustainability of global food production. First, there is reducing the “yield gap” – i.e. the difference between potential and actual crop yields – in many parts of the world. Currently, the largest gaps are to be found in Africa, Asia and Eastern Europe, and reducing it by just 50% could provide enough calories to feed 850 million more people.

china agriculture researchSecond, there is improving growth efficiency. The study identified two key areas where major opportunities exist to reduce climate impacts and improve efficiency of crop growth. These included the reduction of emissions of global greenhouse gas – which agriculture is responsible for 20 t0 35 percent of – in the form of CO2, tropical deforestation and methane, as well as improved efficiency in water usage.

In the case of emissions, the biggest opportunities are in Brazil and Indonesia where deforestation is a major problem, and in China, India and the US, where the production of rice, livestock, and crop fertilization all lead to sizable carbon and methane emissions. With respect to nutrient use, the study found that worldwide, 60 percent of nitrogen and nearly 50 percent of phosphorus applications exceed what crops need to grow.

agribusinessIn the case of water usage, the greatest opportunities are in China, India and the US, where the production of rice, wheat and corn create the most demand for irrigation. India, Pakistan, China and the U.S. also account for the bulk of irrigation water use in water-limited areas. Thus, by boosting crop water use efficiency could also reduce water demand by 8 to 15% without compromising food production.

Third, the report calls for improved efficiency in crop use, which can be done by shifting crops from livestock to humans use and reducing food waste. Currently, the amount of crops fed to animals is sufficient to meet the calorie needs of 4 billion people. The U.S., China and Western Europe account for the bulk of this “diet gap,” with corn being the main crop diverted to animal feed. Shifting these crops could also form a “safety net” in the event of an unforeseen shortfall.

Last, but not least, the report calls for the elimination of food waste, which accounts for some 30 to 50 percent of food production worldwide. Again, the U.S., China and India are the major players, and reducing waste in these three countries alone could yield food for more than 400 million people. All told, these changes could allow for enough food for an additional 3 billion people, which is what the world population is expected to reach by 2050.

world_hungerOverall, West summarizes the report and its recommendations as follows:

Sustainably feeding people today and in the future is one of humanity’s grand challenges. Agriculture is the main source of water use, greenhouse gas emissions, and habitat loss, yet we need to grow more food. Fortunately, the opportunities to have a global impact and move in the right direction are clustered. By focusing on areas, crops and practices with the most to be gained, companies, governments, NGOs and others can ensure that their efforts are being targeted in a way that best accomplishes the common and critically important goal of feeding the world while protecting the environment. Of course, while calories are a key measure of improving food security, nutrition, access and cultural preferences must also be addressed. But the need to boost food security is high. So let’s do it.

As always, the good news is contained within the bad. Or more precisely, every crisis present us with an opportunity for change and advancement. Though Climate Change and air pollution may threaten current and future levels of food production, there are solutions. And in all cases, they present opportunities for healthier living, more efficient use of land and water, and a more sustainable way of meeting our most basic needs.

Sources: fastcoexist.com, sciencedaily.com

Towards a Cleaner Future: Denmark’s Wind Power

wind-power-660Denmark made a recent and very positive announcement. According to Denmark’s Energy Association, wind power is now the cheapest source of energy, beating coal, fossil fuels, and natural gas. What’s more, the government agency claims that by 2016, the electricity whipped up by its newest turbines will be half the price of conventional means. The announcement came in the last week of July, and is raising hopes for clean energy around the world.

For years, wind and solar have been achieving grid parity with fossil fuels in many places around the world, meaning they are just as cheap. But even without the tax breaks, declining manufacturing costs and growing scale have rendered wind power just as cheap as natural gas in many states in the gas-rich US. And as Deutsche Bank analyst Vishal Shah claims, this is the “beginning of the grid parity era” for solar, worldwide.

solar_array1As he explains it, demand is being driven by “sustainable” markets – meaning the US, China, and regions outside of Europe – with Japan leading the way with an estimated 7 GW annual demand:

Solar is currently competitive without subsidies in 10+ major markets globally, and has the potential to achieve competitiveness in 10-20 additional markets over the next 3 years.

China, which plans to add 10 GW of solar capacity this year alone, only added “in the 2-3 GW range” during the first half of 2013, which would suggest a vast expansion is coming in the second half of the year. Emerging markets are likely to adopt unsubsidized policy models to promote solar growth, especially if new low-cost capital becomes available in concert with policy support to reduce costs.

denmark_windBut Denmark is blowing past grid parity and towards a scenario in which clean energy is actually much, much cheaper. According to analysts, when its two massive offshore wind farms come online, they’ll be the nation’s most inexpensive energy source by a wide margin. As Yale 360, an environmental policy group centered at the Yale School of Forestry & Environmental Studies, explains:

Electricity from two new onshore wind power facilities set to begin operating in 2016 will cost around 5 euro cents per kilowatt-hour. Wind power would remain the cheapest energy option even if interest rates on wind power projects were to increase by 10 percent, the report found.

This is good news for a nation that’s hoping to get 50 percent of its power from wind turbines by 2050. Right now, the nation already boasts an impressive clean energy mix of 43 percent. And Rasmus Peterson, Denmark’s energy minister, said at a press conference:

Wind power today is cheaper than other forms of energy, not least because of a big commitment and professionalism in the field. This is true for researchers, companies and politicians. We need a long-term and stable energy policy to ensure that renewable energy, both today and in the future, is the obvious choice.

airpollution1Importantly, the DEA’s analysis did not factor in the health and environmental costs of burning fossil fuels—which are considerable—and instead looked directly at the market forces in the country. Natural gas and coal are much more expensive in Denmark than it is in the US, which helps make wind such an economic bargain, and the nation has explicitly pursued wind power for decades.

But improving technology, falling costs, and the strong, consistently blowing offshore winds that will turn the new turbines are making the case for wind power rock solid. At the end of July, it was revealed that Germany gets a full 28.5 percent of its energy needs with clean sources. Now Denmark is proving that running your nation on clean energy can be cheaper anyone thought possible, even ten years ago.

Sources: motherboard.vice.com, renewableenergyworld.com, e360.yale.edu

 

Powered by the Sun: The “Energy Duck”

Magnificent CME Erupts on the Sun - August 31Part of the challenge of paving the way towards a future where solar power is able to meet our energy needs is finding ways to integrate it into our daily lives. Basically, until such time as efficiency limits, storage and intermittency problems are truly overcome, one of the best ways to do this is to place photovoltaic arrays where the demand is highest and to get creative with how they collect it.

For example, a group of British artists have conceptualized a giant solar harvesting floating duck as part of the 2014 Land Art Generator Initiative Copenhagen design competition. Dubbed “Energy Duck”, the giant structure has been designed not only to generate clean electricity for the local residents of Copenhagen, but to also provide a unique visitor center. In short, it comes renewable energy with a cautionary message about the effects of Climate Change.

energyduckInspired by the arctic eider duck, Energy Duck not only hopes to offer a unique renewable energy source, but also highlight the impact that climate change has had on the local population and breeding habitats of the eider duck in recent years. As its creators – Hareth Pochee, Adam Khan, Louis Leger and Patrick Fryer – explained:

Energy Duck is an entertaining iconic sculpture, a renewable energy generator, a habitable tourist destination and a celebration of local wildlife.

Covered in photovoltaic panels, the Energy Duck is designed to harvest solar energy from every inch of its exterior shell. Solar cells mounted around the base are also positioned to take advantage of the sun’s rays being reflected off the water’s surface. Additionally, the facility features hydro turbines which use water pressure to provide stored energy to the grid after sunset and during the evening.

https://i0.wp.com/images.gizmag.com/gallery_lrg/energyduck-2.jpgAll of this helps the Energy Duck overcome the all-important issue of intermittency. By being able to generate energy around the clock, the Duck is not dependent on the sun shining in order to continue operating and providing power. As the team explained:

When stored energy needs to be delivered, the duck is flooded through one or more hydro turbines to generate electricity, which is transmitted to the national grid by the same route as the PV panel-generated electricity. Solar energy is later used to pump the water back out of the duck, and buoyancy brings it to the surface. The floating height of the duck indicates the relative cost of electricity as a function of city-wide use: as demand peaks the duck sinks.

Inside the giant Energy Duck, visitors can get a unique look into the working mechanics of the hydro turbines, watching as the water levels rise and fall. Sunlight also filters through small spaces between the exterior solar panels, providing a kaleidoscope-like view of Copenhagen. However, another interesting feature about the Energy Duck is its environmental message.

energyduck-5So while people are visiting the interior and taking note of the impressive technology, they will also be getting a lesson in why it is important. And really, the inherent message of the concept is really very appropriate. A clean, renewable, alternative energy source designed to look like, and inspired by, one of the many creatures that is endangered because of humanity’s dependence on unclean fuels.

Now if we could just design a land-roving solar farm in the shape of a polar bear!

Sources: gizmag.com, inhabitat.com

Climate Crisis: The DOE’s Massive CC Operation

CC_PlantUntil such a time exists that clean, renewable energy can provide sustainable energy for cheaper than gas or coal, we can expect that producing energy will continue to generate a carbon footprint. However, the energy industry has been been touting the benefits of carbon capture and sequestration (CCS), which they claim can make traditionally dirty forms of energy much cleaner.

Thus far, few of the project have worked out as planned. But now, the US Department of Energy has started construction on a CSS project using proven technology that will be the largest system in existence. All the action is happening at a coal-fired power plant near Houston where – with the help of NRG Energy and JX Nippon – the DOE hopes to build a carbon capture system that can put 90% of the CO2 output of coal back into the ground where it can’t affect the climate.

CC_operationThe Petra Nova refit was originally going to be a modest DOE project that would retain 60 megawatts of energy generation, but the extra engineering muscle from NRG Energy and JX Nippon boosted the plan dramatically. Petra Nova will now be built with the intention of capturing the carbon output from 240 megawatts. The whole idea of carbon capture is to get the energy out of fossil fuels like coal and oil without releasing the carbon at the same time.

By taking carbon out of the ground and putting it in the atmosphere, the overwhelming majority of scientists believe we are causing global temperatures to increase. Putting the carbon back underground removes it from the atmosphere and maintains the environmental balance we currently enjoy. However, carbon sequestration might need to expand beyond new energy production.

PFTBA-greenhouse-gas-has-greater-global-warming-potential-than-CO2Petra Nova will be using a scaled-up version of smaller amine-based CO2 CC systems. In these, CO2 is routed into a chamber where an amine-based solvent absorbs the gas. The resulting carbon-rich solution isl then sent through another chamber where low pressure steam is used to break the bond holding the carbon in solution so it can be captured while the solvent is reused.

The last step in any CCS system is to get the carbon back underground, but the Petra Nova is doing that in an unusual way. Instead of simply pumping it down in any old place, it will be transmitted via pipeline to the West Ranch oil field about 130 km (80 miles) away. There, it will be used for so-called “enhanced oil recovery”, which means it will be pumped into an oil reservoir deep underground to push previously unreachable oil closer to the surface.

The carbon dioxide does end up underground at the end of the day, but the hydrocarbon fuel cycle keeps on churning with increased oil output from the field. Naturally, the amount of carbon released by oil recovered from the West Ranch oil field will be far greater than what is recovered by this one power plant. Still, the Petra Nova project is a good way to subsidize the development of carbon capture tech until such time as it’s installed in all suitable facilities.

Source: extremetech.com

Towards a Clearner Future: World’s Largest Renewables Projects

jaguar-solar-arrayThanks to increasing efficiency in solar panels, as well as dropping costs for manufacture and installation, generating renewable electricity at home or in commercial  buildings is becoming increasingly viable. And this fast-growing trend has been manifesting itself in an impressive list of “world’s largest” projects, with government and industry pairing to make renewable energy a major power source.

For example, back in January, the world’s largest solar bridge was completed in London on the Blackfriars Bridge. As part of Blackfriars Station in London, the bridge was fitted with 4,400 photovoltaic panels between 2009 and 2014 – which are expected to reduce the station’s CO2 emissions by an estimated 511 tonnes (563 tons) per year. Considering London’s issues with air quality and mass transit, this is a major step towards sustainability.

ivanpah-1Then in February, the Ivanpah Solar Electric Generating System (ISEGS) – the world’s largest solar-thermal plant – became fully operational in the Mojave Desert in southeastern California. The 392 MW plant, which was developed with funding from NRG Energy, Google, and BrightSource Energy, is expected to generate enough electricity to power 140,000 homes, each year.

And in April, Jaguar joined Audi, Ferrari and Renault by installing fields of solar panels on top of its new Engine Manufacturing Center in South Staffordshire. This solar field is now the largest rooftop array in the UK, comprising over 21,000 photovoltaic panels and a capacity of 5.8 MW. Jaguar estimates the installation will meet more than 30 percent of the centers energy needs and reduce the plant’s CO2 footprint by over 2,400 tonnes (2,645.5 tons) per year.

windstream-wind-solar-hybrid-jamaicaAnd now, Windstream Technologies – a commercial wind and sun generating firm aimed at bringing renewable energy to municipalities, commercial buildings and homes -has installed what it says is the world’s largest wind-solar hybrid array on the roof of the Myers, Fletcher, & Gordon (MFG) lawfirm in Kingston, Jamaica. The array is expected to generate over 106,000 kWh annually and demonstrates the ability to maximize energy production with limited roof space.

MFG’s installation is a part of an effort by Jamaica’s sole energy provider, Jamaica Public Service, to make the capability for producing renewable energy for its approximately one-million citizens more widely available. The array is expected to generate 25kW of wind power and 55kW of solar power, and the electricity generated can either be used, stored off-grid or fed back into the grid.

windstream-wind-solar-hybrid-jamaica-3The installation incorporates 50 of WindStream’s SolarMill devices, with each different model comprising one or more solar panel and three or more turbines. This is to ensure that the daily and seasonal trends of wind and solar resources are all mitigated by capturing both at any time of the day or year. Windstream says it will return its investment within four years and will produce savings of around US$2 million over the course of its estimated 25-year lifespan.

Merging solar, wind and other renewable technologies into communities, commercial spaces and housing is not only a means of cutting emissions and utility bills, it is also a way to tackle two of renewable energy’s greatest stumbling blocks. These are the problems of storage and intermittency – generating energy when it’s needed and getting it to where it’s needed.

And be sure to check out this video of the rooftop array from Windstream Technologies:


Sources:
gizmag.com, (2), nrg.com, networkrailmediacentre.co.uk

The Future of Disaster Relief: The Ecos PowerCube

EcosPowerCube-640x353One of the greatest challenges to humanitarian aid and disaster relief is the task of getting services to where they needed the most. Whether it’s hurricanes, earthquakes, mudslides, or wildfires; getting electricity, water, and other utilities up and running again is a tough task. And with every moment that these services are not available, people are likely to die and humanitarian crises ensue.

However, Ecosphere Technologies – a diversified water engineering and environmental services company – believes it’s designed a solution in the form of their new PowerCube. This self-contained, mobile apparatus is designed to deliver solar power to off-grid areas along with water purification facilities and WiFi base stations — all in a single package that is the size of a shipping container.

https://i0.wp.com/www.extremetech.com/wp-content/uploads/2014/06/disaster-lg-1.jpgThe Ecos PowerCube will be available in three sizes that are designed to fit into 10-foot, 20-foot, and 40-foot shipping containers. The largest models will be capable of generating up to 15kW of power, which will be parceled between providing electrical hook-ups, water treatment and internet access. And they will also serve as temporary shelters, providing temporary sleeping quarters or medical stations.

What is especially innovative about the design is the use of fold-out solar panels, which allow for significant power generation without compromising on the handy space-saving form. Deployed, the Cube is able to maximize its solar-absorbing surface area; but packed up, its small enough to fit into a shipping container and be deployed around the world. However, the design also comes with its share of drawbacks.

powercube-howFirst, there’s the apparent lack of batteries, which means the Cubes will only be able to provide power while the sun is shining. This is crucial since time is often of the essence in disaster areas, with windows for treating wounds and rescuing the buried and trapped lasting typically less than three days. Second, the 15kW generator is rather meager compared to what a diesel generator can produce – between 600kW and 1.7MW.

This means, in essence, that some twenty or so PowerCubes would have to be shipping to a disaster area to equal the electrical capacity of a single large diesel generator. And the intermittency problem is certainly an issue for the time being, unless they are prepared to equip them with high-capacity batteries that can quickly absorb and hold a charge (some graphene or integrated Li-ion batteries should do it).

https://i0.wp.com/www.extremetech.com/wp-content/uploads/2014/06/military-lg-2.jpgIn the meantime, it is still a crafty idea, and one which has serious potential. Not only do disaster areas need on-site water distribution – shipping it in can be difficult and time consuming – but internet access is also very useful to rescue crews that need up-to-date information, updates, and the ability to coordinate their rescue efforts. And military installations could certainly use the inventions, as they would cut down on fuel consumption.

Still, refinements will need to be made before this is a one-fit solution problem of what to do about disaster relief and fostering development in densely populated areas of the world where things like water-treatment, electricity, and internet access is not readily available.

Source: extremetech.com, ecospheretech.com

Climate Crisis: China’s Pollution-Eating Skyscrapers

phoenix-towers-worlds-tallest-wuhan-china-designboom-01 Though it is already home to the world’s largest building – in the form of the New Century Global Center in Chendu – China is seeking to create the world’s tallest structure as well. Designed by UK-based Chetwoods Architects and known as the Phoenix Towers, this tower concept is slated to be built in Wuhan, Central China. But equally impressive is the fact that this building will be suck pollution out of the air and water and will host more than the usual building features.

The larger of the two towers reaches a total of 1000 meters (3,280 ft) in height – beating the Burj Khalifa by 170 meters (558 ft) – and sports an ambitious list of sustainable technology. The towers cover 7 hectares (17 acres) of ground on a 47-hectare (116-acre) plot that sits upon an island in a lake. In an attempt to make the design of the towers more relevant to Chinese culture, Chetwoods drew upon the Fenghuang (or Chinese Phoenix) mythological bird and designated the larger tower Feng (male), and the smaller tower Huang (female).

phoenix_towers_chetwoods-2The designers hope the building will serve as a catalyst for more sustainable design in the industrial city. Laurie Chetwood, chairman of U.K.-based Chetwoods, the architects on the project explained how the building’s water-cleaning features work:

The water goes up through a series of filters. We don’t use power to pull the water up, we’re using passive energy. As it goes through the filters and back, we’re also putting air back into the lake to make it healthier… Wuhan is an unusual city, dotted with huge lakes. Protecting the lakes could lead to other projects that protect them even more.

The towers also have pollution-absorbing coatings to help clean the air, vertical gardens that filter more pollution, and a chimney in the middle of the larger tower naturally pulls air across the lake for better ventilation. For the sake of generating energy, the building relies on a combination of wind turbines, lightweight solar cladding, and hydrogen fuel cells running on the buildings’ waste, giving it energy independence and even having enough left over for the local community.

phoenix_towers_chetwoods-4Inspired by the Chinese symbols of the phoenix, and the concept of yin and yang, one tower feeds the other with renewable power in a symbiotic relationship. Spheres hanging between the two towers will also hold restaurants with views of the lake. Pending approval by the city’s mayor, construction may begin by the end of the year and could be completed by 2017 or 2018, a pace that the architects say would be unlikely in other countries.

According to Chetwood, construction in China obeys a different set of rules and parameters than his native Britain:

The most amazing thing for me is that in the U.K. we strive as designers to get things built, and there’s a lot of red tape, but the Chinese seem to have a different view of things. I think they’re incredibly optimistic. If you have an idea and you think, ‘Oh, is this going to be too exciting’, they’ll actually want it more exciting. It’s more ambitious. They’re quite keen to push the boundaries. For a designer, that’s fantastic. It’s a thrill.

Whereas the sheer size of the buildings is reflective of China’s aim to assert its national authority on the world stage, it’s focus on pollution-eating and green energy is reflective of the desire to create living spaces in a sustainable way. And it is one of many building concepts being considered by Chinese authorities that seeks to address pollution by achieve energy independence, while at the same time being part of the solution by incorporating pollution-eating features.

shanghai_towerFor instance, there’s China’s Shanghai Tower, which finished construction in August of last year. This building is currently the tallest tower in China, is one-third green space and a transparent second skin that surrounds the city in a protective air envelope that controls its internal temperature. In addition, vertical-axis wind turbines located near the top of the tower and geothermal vents located at the bottom will generate 350,000 kWh of supplementary electricity per year.

And then there’s Sky City, a building under construction (though currently on hold) in Changsha, Hunan province. Designed by Broad Sustainable Building, this 666m meter (2,185 ft) skyscraper incorporates numerous sustainable building features. These include modular design, recycled building materials, non-toxic building materials, insulated walls and quadruple glazing. Beyond China, there is also the Pertamina Energy Tower in Jakarta, which relies on geothermal, solar, and wind turbines to act as the very picture of energy independence.

Together, these concepts (and many others currently under consideration) represent the future of urban planning and architecture. In addition to being assembled with recycled material, fabricated using less wasteful methods (like 3-D printing), and seeing to their own energy needs in a clean and sustainable way, they will also incorporate carbon capture, air and water cleaning technology that will make urban environments healthier places to live.

Sources: fastcoexist.com, designboom.com, gizmag.com