The Future is Here: Black Hawk Drones and AI pilots

blackhawk_droneThe US Army’s most iconic helicopter is about to go autonomous for the first time. In their ongoing drive to reduce troops and costs, they are now letting their five-ton helicopter carry out autonomous expeditionary and resupply operations. This began last month when the defense contractor Sikorsky Aircraft, the company that produces the UH-60 Black Hawk – demonstrated the hover and flight capability in an “optionally piloted” version of their craft for the first time.

Sikorsky has been working on the project since 2007 and convinced the Army’s research department to bankroll further development last year. As Chris Van Buiten, Sikorsky’s vice president of Technology and Innovation, said of the demonstration:

Imagine a vehicle that can double the productivity of the Black Hawk in Iraq and Afghanistan by flying with, at times, a single pilot instead of two, decreasing the workload, decreasing the risk, and at times when the mission is really dull and really dangerous, go it all the way to fully unmanned.

blackhawk_drone1The Optionally Piloted Black Hawk (OPBH) operates under Sikorsky’s Manned/Unmanned Resupply Aerial Lifter (MURAL) program, which couples the company’s advanced Matrix aviation software with its man-portable Ground Control Station (GCS) technology. Matrix, introduced a year ago, gives rotary and fixed-wing vertical take-off and landing (VTOL) aircraft a high level of system intelligence to complete missions with little human oversight.

Mark Miller, Sikorsky’s vice-president of Research and Engineering, explained in a statement:

The autonomous Black Hawk helicopter provides the commander with the flexibility to determine crewed or un-crewed operations, increasing sorties while maintaining crew rest requirements. This allows the crew to focus on the more ‘sensitive’ operations, and leaves the critical resupply missions for autonomous operations without increasing fleet size or mix.

Alias-DarpaThe Optionally Piloted Black Hawk fits into the larger trend of the military finding technological ways of reducing troop numbers. While it can be controlled from a ground control station, it can also make crucial flying decisions without any human input, relying solely on its ‘Matrix’ proprietary artificial intelligence technology. Under the guidance of these systems, it can fly a fully autonomous cargo mission and can operate both ways: unmanned or piloted by a human.

And this is just one of many attempts by military contractors and defense agencies to bring remote and autonomous control to more classes of aerial vehicles. Earlier last month, DARPA announced a new program called Aircrew Labor In-Cockpit Automation System (ALIAS), the purpose of which is to develop a portable, drop-in autopilot to reduce the number of crew members on board, making a single pilot a “mission supervisor.”

darpa-alias-flight-crew-simulator.siMilitary aircraft have grown increasingly complex over the past few decades, and automated systems have also evolved to the point that some aircraft can’t be flown without them. However, the complex controls and interfaces require intensive training to master and can still overwhelm even experienced flight crews in emergency situations. In addition, many aircraft, especially older ones, require large crews to handle the workload.

According to DARPA, avionics upgrades can help alleviate this problem, but only at a cost of tens of millions of dollars per aircraft type, which makes such a solution slow to implement. This is where the ALIAS program comes in: instead of retrofitting planes with a bespoke automated system, DARPA wants to develop a tailorable, drop‐in, removable kit that takes up the slack and reduces the size of the crew by drawing on both existing work in automated systems and newer developments in unmanned aerial vehicles (UAVs).

Alias_DARPA1DARPA says that it wants ALIAS to not only be capable of executing a complete mission from takeoff to landing, but also handle emergencies. It would do this through the use of autonomous capabilities that can be programmed for particular missions, as well as constantly monitoring the aircraft’s systems. But according to DARPA, the development of the ALIAS system will require advances in three key areas.

First, because ALIAS will require working with a wide variety of aircraft while controlling their systems, it will need to be portable and confined to the cockpit. Second, the system will need to use existing information about aircraft, procedures, and flight mechanics. And third, ALIAS will need a simple, intuitive, touch and voice interface because the ultimate goal is to turn the pilot into a mission-level supervisor while ALIAS handles the second-to-second flying.

AI'sAt the moment, DARPA is seeking participants to conduct interdisciplinary research aimed at a series of technology demonstrations from ground-based prototypes, to proof of concept, to controlling an entire flight with responses to simulated emergency situations. As Daniel Patt, DARPA program manager, put it:

Our goal is to design and develop a full-time automated assistant that could be rapidly adapted to help operate diverse aircraft through an easy-to-use operator interface. These capabilities could help transform the role of pilot from a systems operator to a mission supervisor directing intermeshed, trusted, reliable systems at a high level.

Given time and the rapid advance of robotics and autonomous systems, we are likely just a decade away from aircraft being controlled by sentient or semi-sentient systems. Alongside killer robots (assuming they are not preemptively made illegal), UAVs, and autonomous hovercraft, it is entirely possible wars will be fought entirely by machines. At which point, the very definition of war will change. And in the meantime, check out this video of the history of unmanned flight:


Sources:
wired.com, motherboard.vice.com, gizmag.com
, darpa.mil

The Future is Here: Driverless Army Trucks

TARDECAs Napoleon Bonaparte once said, “An army marches on its belly”. And like most tidbits of military wisdom, this is one that has not changed with the ages. Whether it’s leading an army of war elephants and hoplites through the Alps, a Grande Armee across the Steppes, or a mechanized division through Central Asia, the problem of logistics is always there. For an army to remain effective and alive, it needs to be supplied; and those supply trains has to be kept moving and safe.

In the modern world, this consists of ensuring that troop and supply trucks are protected from the hazards of enemy snipers, rockets, and the all-too-prevalent menace of improvised explosive devices (IEDs). Until now, this consisted of having armed convoys escort armored trucks through hostile terrain and contested areas. But in an age of unmanned aerial vehicles and robotic exoskeletons, it seems only natural that driverless trucks would be the next big thing.

TARDEC1That’s the thinking behind the Autonomous Mobility Appliqué System (AMAS), a program being developed by the U.S. Army Tank-Automotive Research, Development and Engineering Center (TARDEC) in collaboration with major defense contractor Lockheed Martin. This program, which was demonstrated earlier this month at Fort Hood, Texas, gives full autonomy to convoys to operate in urban environments.

In tests, driverless tactical vehicles were able to navigate hazards and obstacles including pedestrians, oncoming traffic, road intersections, traffic circles and stalled and passing vehicles. Similar to the systems used by the first generation of robotized cars, the AMAS program for the Pentagon’s ground troops uses standard-issue vehicles outfitted with a high-performance LIDAR sensor and a second GPS receiver, locked and loaded with a range of algorithms.

TARDEC-ULV-instrument-panelThat gear, Lockheed said, could be used on virtually any military vehicle, but in these tests was affixed to the Army’s M915 tractor-trailer trucks and to Palletized Loading System vehicles. According to Lockheed, AMAS also gives drivers an automated option to alert, stop and adjust, or take full control under user supervision. David Simon, AMAS program manager for Lockheed Martin Missiles and Fire Control, described the program in a statement:

The AMAS CAD hardware and software performed exactly as designed, and dealt successfully with all of the real-world obstacles that a real-world convoy would encounter.

Under an initial $11 million contract in 2012, Lockheed Martin developed the multiplatform kit which integrates low-cost sensors and control systems with Army and Marine tactical vehicles to enable autonomous operation in convoys. But not only do driverless convoys add a degree of safety under dangerous conditions, they also move the military closer its apparent goal of nearly total autonomous warfare.

squadmissionsupportsystemAMAS algorithms also are used to control the company’s Squad Mission Support System (SMSS), a more distinctive and less conventional six-wheeled unmanned ground vehicle that has been used by soldiers in Afghanistan. Combined with robots, like the Legged Squad Support System (LS3) by Boston Dynamics, the development of driverless trucks is not only a good counter to suicide bombers and IEDs, but part of a larger trend of integrated robotics.

In an age where more and more hardware can be controlled by a remote operator, and grunts are able to rely on robotic equipment to assist them whenever and wherever the 3D’s of hostile territory arise (i.e. dirty, difficult, or dangerous), trucks and armored vehicles that can guide themselves is just the latest in a long line of developments aimed at “unmanning the front lines”.

And of course, there’s a video of the concept in action, courtesy of the U.S. Army and TARDEC:


Sources: wired.com, news.cnet.com, lockheedmartin.com

The Autonomous Robotic 3D Printer!

Robo-printerTechnophiles and fans of post-apocalyptic robo-fiction, your attention please! As if the field of 3D printing was not already impressive and/or scary enough, it seems that patents have been filed for the creation of a machine that can perform the job autonomously. It’s called the Robotic Fabricator, a robot-assisted all-in-one design that can print, mill, drill, and finish a final product — and all without human intervention.

Typically, 3D printers require human handlers to oversee the production process, removing unwanted materials such as burrs on plastic and metal parts, repositioning and removing printed objects, getting rid of powdery residue from the interiors of intricate structures. But this machine, once complete, will take away the need for an operator entirely.

Roomba780_oben

The company responsible for this new concept is iRobot (no joke), the same people who brought us the Roomba vacuum robot. It features a flexible pair of robot arms and grippers that exhibit an impressive six degrees of freedom. And the platform is equipped with a series of sensors that tells the computer where it’s at in terms of the production, and when to employ the additive technique of 3D printing or the subtractive technique of milling and drilling.

3D_robotprinter

Naturally, iRobot plans to make the machine readily available to industries for the sake of producing and repairing a wide-range of consumer products. In terms of materials, the company claims it will be able to handle everything from ABS, polycarbonate, and silicone rubbers, to urethane rubbers, plastics, and low-melting-temperature metals, as well as combinations of these. What’s more, it will even be able to manufacture components for more autonomous 3D printers!

Picture it, if you dare. If this machine proves successful, it may very well become the precursor for a new breed of machinery that can assemble just about anything from scratch – including itself! As Futurists and Apocalyptics love to point out, machines that are capable of self-replicating and producing new and ever-increasing complex forms machinery is the key to the future, or to Armageddon.

Both fine choices, depends on what floats your boat!

Source: IO9.com, www.3ders.org