The Future is Here: The World’s First Cyborg!

TerminatorWell, that’s one way to look at this bio-engineered jellyfish. Sure, it’s a long way from Terminators, Replicants and Cylons, but it just might constitute a step in that direction. Known as a medusoid, this jellyfish was created by growing a thin layer of rat heart muscle cells on top of a layer of elastic silicone. The end result is a creature that is a merger of living and non-living components and swims like an actual jellyfish.

This feat of bioengineering is the result of a collaboration between Harvard biophysicist Kit Parker and Caltech biotechnology researcher Janna Nawroth, who used the bell-shaped configuration of a moon jelly as their blueprint. Like the moon jelly, the cyborg version moves by rapidly moving its appendages, then drifts by opening itself up again. This is accomplished by applying an electrical current to the heart muscle, which contracts to close the body, while the silicone part springs the body back into a flat shape.

medusoidThe point of this project, according to Nawroth, was to show that lifeforms, beginning with the most basic, could be reverse engineered and rebuild using biological and synthetic components. What’s more, they intended to demonstrate that mechanical components could be made to mimic biological functions. Though this may seem like a modest accomplishment to some, it effectively shows that biotech machines can exist and behave like normal creatures, at least basic ones.

Score one for the biotech team! Combined with AI research, nanotechnology and mind-machine interfacing, this is all grist to the Singularity mill. If we can create machines that can mimic complex biological functions, then there’s very little keeping us from creating artificial lifeforms… like synthetic humans! And if machinery can merge with biological tissue, then cybernetic enhancements capable of accelerating human thought might be possible too. Hence why this latest development should be seen as significant, and even a little bit scary!

Via IO9