The Large Hadron Collider: We’ve Definitely Found the Higgs Boson

higgs-boson1In July 2012, the CERN laboratory in Geneva, Switzerland made history when it discovered an elementary particle that behaved in a way that was consistent with the proposed Higgs boson – otherwise known as the “God Particle”. Now, some two years later, the people working the Large Hadron Collider have confirmed that what they observed was definitely the Higgs boson, the one predicted by the Standard Model of particle physics.

In the new study, published in Nature Physics, the CERN researchers indicated that the particle observed in 2012 researchers indeed decays into fermions – as predicted by the standard model of particle physics. It sits in the mass-energy region of 125 GeV, has no spin, and it can decay into a variety of lighter particles. This means that we can say with some certainty that the Higgs boson is the particle that gives other particles their mass – which is also predicted by the standard model.

CERN_higgsThis model, which is explained through quantum field theory  – itself an amalgam of quantum mechanics and Einstein’s special theory of relativity – claims that deep mathematical symmetries rule the interactions among all elementary particles. Until now, the decay modes discovered at CERN have been of a Higgs particle giving rise to two high-energy photons, or a Higgs going into two Z bosons or two W bosons.

But with the discovery of fermions, the researchers are now sure they have found the last holdout to the full and complete confirmation that the Standard Model is the correct one. As Marcus Klute of the CMS Collaboration said in a statement:

Our findings confirm the presence of the Standard Model Boson. Establishing a property of the Standard Model is big news itself.

CERN_LHCIt is certainly is big news for scientists, who can say with absolute certainty that our current conception for how particles interact and behave is not theoretical. But on the flip side, it also means we’re no closer to pushing beyond the Standard Model and into the realm of the unknown. One of the big shortfalls of the Standard Model is that it doesn’t account for gravity, dark energy and dark matter, and some other quirks that are essential to our understanding of the universe.

At present, one of the most popular theories for how these forces interact with the known aspects of our universe – i.e. electromagnetism, strong and nuclear forces – is supersymmetry.  This theory postulates that every Standard Model particle also has a superpartner that is incredibly heavy – thus accounting for the 23% of the universe that is apparently made up of dark matter. It is hoped that when the LHC turns back on in 2015 (pending upgrades) it will be able to discover these partners.

CERN_upgradeIf that doesn’t work, supersymmetry will probably have to wait for LHC’s planned successor. Known as the “Very Large Hadron Collider” (VHLC), this particle accelerator will measure some 96 km (60 mile) in length – four times as long as its predecessor. And with its proposed ability to smash protons together with a collision energy of 100 teraelectronvolts – 14 times the LHC’s current energy – it will hopefully have the power needed to answer the questions the discovery of the Higgs Boson has raised.

These will hopefully include whether or not supersymmetry holds up and how gravity interacts with the three other fundamental forces of the universe – a discovery which will finally resolve the seemingly irreconcilable theories of general relativity and quantum mechanics. At which point (and speaking entirely in metaphors) we will have gone from discovering the “God Particle” to potentially understanding the mind of God Himself.

I don’t think I’ve being melodramatic!

Source: extremetech.com, blogs.discovermagazine.com

News From Space: Cosmic Inflation and Dark Matter

big bang_blackholeHello again! In another attempt to cover events that built up while I was away, here are some stories that took place back in March and early April of this year, and which may prove to be some of the greatest scientific finds of the year. In fact, they may prove to be some of the greatest scientific finds in recent history, as they may help to answer the most fundamental questions of all – namely, what is the universe made of, and how did it come to exist?

First up, in a development that can only be described as cosmic in nature (pun intended), back in March, astrophysicists at the Harvard-Smithsonian Center announced the first-ever observation of gravitational waves. This discovery, which is the first direct evidence of the Big Bang, is comparable to significance to CERN’s confirmation of the Higgs boson in 2012. And there is already talk about a Nobel Prize for the Harvard crew because of their discovery.

big_bangThis theory, which states that the entire universe sprung into existence from a tiny spot in the universe some 13.8 billion years ago, has remained the scientific consensus for almost a century. But until now, scientists have had little beyond theory and observations to back it up. As the name would suggest, gravitational waves are basically ripples in spacetime that have been propagating outward from the center of the universe ever since the Big Bang took place.

Originally predicted as part of Einstein’s General Theory of Relativity in 1916, these waves are believed to have existed since a trillionth of a trillionth of a trillionth of a second after the Big Bang took place, and have been propagating outward for roughly 14 billion years. The theory also predicts that, if we can detect some gravitational waves, it’s proof of the initial expansion during the Big Bang and the continued inflation that has been taking place ever since.

bicep2-640x425Between 2010 and 2012, the BICEP2 – a radio telescope situated at the Amundsen–Scott South Pole Station (pictured above) – the research team listened to the Cosmic Microwave Background (CMB). They were looking for hints of B-mode polarization, a twist in the CMB that could only have been caused by the ripples of gravitational waves. Following a lot of data analysis, the leaders announced that they found that B-mode polarization.

The work will now be scrutinized by the rest of the scientific community, of course, but the general consensus seems confident that it will stand up. In terms of scientific significance, the confirmation of gravitational waves would be the first direct evidence that the universe started out as nothing, erupted into existence 13.8 billion years ago, and has continued to expand ever since. This would confirm that cosmic inflation really exists and that the entire structure of the universe was decided in the beginning by the tiniest flux of gravitational waves.

planck-attnotated-580x372And that’s not only discovery of cosmic significance that was made in recent months. In this case, the news comes from NASA’s Fermi Gamma-ray Space Telescope, which has been analyzing high-energy gamma rays emanating from the galaxy’s center since 2008. After pouring over the results, an independent group of scientists claimed that they had found an unexplained source of emissions that they say is “consistent with some forms of dark matter.”

These scientists found that by removing all known sources of gamma rays, they were left with gamma-ray emissions that so far they cannot explain. And while they were cautious that more observations will be needed to characterize these emissions, this is the first time that potential evidence has been found that may confirm that this mysterious, invisible mass that accounts for roughly 26.8% of the universe actually exists.

darkmatter1To be fair, scientists aren’t even sure what dark matter is made of. In fact, it’s very existence is inferred from gravitational effects on visible matter and gravitational lensing of background radiation. Originally, it was hypothesized to account for the discrepancies that were observed between the calculations of the mass of galaxies, clusters and entire universe made through dynamical and general relativistic means, and  the mass of the visible “luminous” matter.

The most widely accepted explanation for these phenomena is that dark matter exists and that it is most probably composed of Weakly Interacting Massive Particles (WIMPs) that interact only through gravity and the weak force. If this is true, then dark matter could produce gamma rays in ranges that Fermi could detect. Also, the location of the radiation at the galaxy’s center is an interesting spot, since scientists believe that’s where dark matter would lurk since the insofar invisible substance would be the base of normal structures like galaxies.

fermi_gamma-raysThe galactic center teems with gamma-ray sources, from interacting binary systems and isolated pulsars to supernova remnants and particles colliding with interstellar gas. It’s also where astronomers expect to find the galaxy’s highest density of dark matter, which only affects normal matter and radiation through its gravity. Large amounts of dark matter attract normal matter, forming a foundation upon which visible structures, like galaxies, are built.

Dan Hooper, an astrophysicist at Fermilab and lead author of the study, had this to say on the subject:

The new maps allow us to analyze the excess and test whether more conventional explanations, such as the presence of undiscovered pulsars or cosmic-ray collisions on gas clouds, can account for it. The signal we find cannot be explained by currently proposed alternatives and is in close agreement with the predictions of very simple dark matter models.

Hooper and his colleagues suggest that if WIMPs were destroying each other, this would be “a remarkable fit” for a dark matter signal. They again caution, though, that there could be other explanations for the phenomenon. Writing in a paper submitted to the journal Physical Review D, the researchers say that these features are difficult to reconcile with other explanations proposed so far, although they note that plausible alternatives not requiring dark matter may yet materialize.

CERN_LHCAnd while a great deal more work is required before Dark Matter can be safely said to exist, much of that work can be done right here on Earth using CERN’s own equipment. Tracy Slatyer, a theoretical physicist at the Massachusetts Institute of Technology and co-author of the report, explains:

Dark matter in this mass range can be probed by direct detection and by the Large Hadron Collider (LHC), so if this is dark matter, we’re already learning about its interactions from the lack of detection so far.This is a very exciting signal, and while the case is not yet closed, in the future we might well look back and say this was where we saw dark matter annihilation for the first time.

Still, they caution that it will take multiple sightings – in other astronomical objects, the LHC, or direct-detection experiments being conducted around the world – to validate their dark matter interpretation. Even so, this is the first time that scientists have had anything, even tentative, to base the existence of Dark Matter’s on. Much like until very recently with the Big Bang Theory, it has remained a process of elimination – getting rid of explanations that do not work rather than proving one that does.

So for those hoping that 2014 will be the year that the existence of Dark Matter is finally proven – similar to how 2012 was the year the Higgs Boson was discovered or 2013 was the year the Amplituhedron was found – there are plenty of reasons to hope. And in the meantime, check out this video of a gamma-ray map of the galactic center, courtesy of NASA’s Goddard Space Center.


Sources:
extremetech.com, IO9.com, nasa.gov, cfa.harvard.edu, news.nationalgeographic.com

Ann Makosinki and I Have a Chat!

Ann-Makosinski-Google-Science-Fair-2It’s a rare thing when a humble blogger like yours truly gets the chance to speak to someone who has truly made a difference in the world. And this time around, that person is Ann Makosinki, inventor of the body heat-powered flashlight and winner of last year’s Google Science Fair. In addition to being a young inventor, she also happens to hail from my neck of the woods here in Victoria, British Columbia. So you can imagine the enthusiasm I felt when she agreed to this interview!

As many of you may already know  – since you all faithfully read this blog 😉 – Ann Makosinki is winner of the 2013 Google Science Fair Award for her invention that uses the warmth of a person’s own hand to power an LED flashlight. Using Peltier tiles, which produce electricity when heated on one side and cooled on the other, she developed a flashlight which she believes will be of use in the developing world where electrical outlets and batteries are not always available.

body_heat_flashlightAnn’s inspiration comes from her commitment to science, renewable energy, the environment, and her roots in the Philippines. Ultimately, her goal is to bring light and energy to those who live without it all over the world. After winning the gold medal at the 2013 Canada-Wide Science Fair Gold Medal, her flashlight won at the Google Science Fair’s top prize of a $25,000 scholarship and the choice of a “once-in-a-lifetime experience” from CERN, LEGO or Google.

In addition, she has been a keynote speaker at TEDx in three different cities (Vancouver, Redmond and Edmonton), at Techtoria here in Victoria, earned a spot on Jimmy Fallon Live, and will be representing Canada at the 2014 International Science and Engineering Fair this coming May. The following is a transcript of our interview, which occurred via email in spite of her (very) busy schedule:

1. When did you first discover your love for science? What are some of your earliest memories of doing something science-related?

My love for science started when I was very young. My first toy was actually a box of transistors! I was always also interested in insects, and used to collect them and keep them in jars. I would feed them and spray them each morning before I would head out to school. My parents were very supportive of my interests, even if I was looking through the garbage, hot gluing disposed objects together and creating “inventions” (of course nothing ever worked). My dad also always took me to the local island science fair, and I was very shy to ask the other kids questions, but I always thought it was so cool that they had chosen their own topic in science and now were presenting on it.

2. When did you take part in your first science fair? What was your project?

I started participating in the local science fair, the Vancouver Island Regional Science Fair, when I was in grade 6. My science project was one from that I had done in class, comparing two laundry detergents.

3. How did you come to be interested in renewable energy?

I realized early on that energy is a key issue in today’s world, because of our increased reliance on energy and its effect on global warming. It is a challenging problem, and I wished to explore alternative energy sources and find solutions. I focused on the problem of battery elimination, because that’s something I understand and can think around.

4. You’re invention of the body-heat powered flashlight was a big hit at the 2013 Google Science Fair. What was it like competing with people your age who have such a passion for science?

For me, it wasn’t about competing with the other people, but more of getting know them and seeing how we were all alike in some ways. It inspired me to see how passionate they were about science, and while we could have conversations about technical aspects that I usually wouldn’t get to talk about with my friends, they were all still like normal teenagers.

5. This past December you were named one of Time Magazines Top 30 under 30. What other accolades have you earned since winning at the Google Fair?

Hmm, well I have given three TEDx talks since then and many other speeches locally. I have had numerous interviews/film crew from US and Europe making short documentaries. I also appeared on the Tonight Show with Jimmy Fallon’s during the show’s premiere week, and I have a few more things lined up. However, I think what matters most to me is the fact that my project has brought so much awareness to the problem of people without electricity, and to the potential that thermoelectricity has.

6. Since winning at Google Fair, you’ve presented at TEDx RenfrewCollingwood, the Techtoria conference in Victoria, and got a spot on Jimmy Fallon Live. Is it fair to say your life has changed since debuting your invention? Do you feel like a celebrity?

I definitely do not feel like a celebrity. Sure, I get recognized once in a blue moon, or people want to have their picture with me, but I know that will soon end. I think something that has changed is the fact that I really value the time when I can wind down and relax, because with so much going on I’m always on the go and worrying about my next due date.

7. What is the future hold for renewable energy, in your opinion?

I think we are already seeing a huge increase in the interest in renewable energy and alternative energy sources. As global warming and the greenhouse effect closes in on us, we will be obliged to look around to harvest natural energy, whether it be from heat, sun, water, wind etc. It holds a lot of potential, but our technologies for harvesting the energy efficiently are still developing. If my flashlight can eliminate even a fraction of batteries from the city dumps, I will have achieved my aim.

8. What does the future hold for Ann Makosinki?

I hope to commercialize the flashlight and make it available to children in the world who need light the most. Beyond that, I hope to get into college and make my little contribution towards a cleaner and better world to come.

She hopes to commercialize the flashlight? I for one can’t believe that she hasn’t been approached by every company from GE to Applied Solar. But it is great to know that young minds are coming up with breakthroughs that could be making a very real difference in the world of tomorrow. I, for one, consider to be right up there with the Darfur Stove and Quetsol solar-powered lights.

And be sure to check out the video of Ann’s speech at TEDx RenfewCollingwood which took place in October 2013, entitled “Be the Source”:


And here is her guest spot on Jimmy Fallon Live, as part of GE’s “Fallonventions”, from this past February:

Winning Ideas: The Bodyheat Powered Flashlight!

body_heat_flashlightEvery year, IT giant Google holds an online competition open to students aged 13-18 from around the globe to come up with new and challenging scientific ideas. And this year, one the winners just happens to hail from my hometown of Victoria, British Columbia. Her name is Ann Makosinki, a 15 year old high school student who invented a way to power a flashlight using only the warmth of your hand.

She claimed a trophy made of Lego for the 15-16 age category at an awards gala that was held on Monday, Sept. 23rd. Her prizes were a $25,000 scholarship and a “once-in-a-lifetime experience” from either CERN (the European Organization for Nuclear Research), LEGO or Google. Quite the impressive accomplishment for a 11th grader, but then again, Makosinki has been a scientist at heart ever since she was a little kid.

google-science-fair-winners-2013For starters, when other children were playing with toy cars and dolls, she busied herself with transistors and microcircuits. What’s more, by Grade 6, she began submitting projects to science fairs and began showing an interest in alternative energy. Still, Makosinki was surprised to be getting an award, given her competition. As she said:

I’m in shock, I’m in shock. It’s actually kind of embarrassing because I didn’t even change [before the awards ceremony]. I didn’t even comb my hair or anything. I must have looked like an absolute mess on stage because I didn’t expect to go up at all.

As for the invention itself, it is easy to see why she won. Basically, it is an LED flashlight that relies on the thermoelectric effect to generate electricity when held. This is done through a series of devices that are known as Peltier tiles, which produce electricity when heated on one side and cooled on the other. The tiles are fixed to the outside of the flashlight while the tube itself is hollow.

peltier-figure-9When held one side of the Peltier tiles are heated by the warmth of the person’s hand, air flowing through the hollow tube helps keep the other side cool. This combination of body heat and air cooling allows enough power to be generated to maintain a steady beam of light for 20 minutes. And all without the need for batteries and the resulting ewaste when they go dead.

Makosinki came up with the idea while researching different forms of alternative energy a few years ago. Already, she had experimented with Peltier tiles for her Grade 7 science fair project. While researching her project, she thought of them again as a way to potentially capture the thermal energy produced by the human body. After doing some calculations, she found that the amount of energy produced by a person’s hand was theoretically sufficient to power an LED light.

ann_makosinksiHowever, putting it into practice proved somewhat more difficult. After buying some Peltier tiles on eBay, she tested them and found that while they generated more than enough power, the voltage produced was only a fraction of what she needed. She rectified this problem after doing some further research, where she discovered that the addition of transformers could be used to boost the voltage.

She spent months doing research on the internet, experimenting with different circuits and even building her own transformers, which still didn’t provide enough voltage. In the end, she came across an article on the web about energy harvesting that suggested an affordable circuit that would provide the voltage she needed when used with a recommended transformer. Finally, the circuit worked.

ann_makosinksi1Makosinski admitted there were points in the experiment when she thought it would never work. But as she said:

You just kind of have to keep going. This took quite awhile ’cause I had to do it during the school year as well and I had homework, plays, whatever that I was also doing.

After making it to the Google Science Fair, she and her colleagues spent the day presenting at Google’s headquarters in Mountain View, California. Here, the 15 judges – which included scientists from a variety of fields, science journalists, an astronaut, and a former Google Science Fair winner – witnessed their creations and tried to determine which held the most promise.

The other winners included Viney Kumar, an Australia student who captured the 13-14 age category for an Android app that warns drivers of an approaching emergency vehicle more than a minute in advance, in order to help clear a path for it. And then there was Elif Bilgin of Turkey, a 16-year old who took home the Scientific American Science in Action Prize and the Voter’s Choice Award for inventing a way to make plastic from banana peels.

Ann-Makosinski-Google-Science-Fair-2The Grand Prize for the 17-18 age category went to Eric Chen, a 17 year old student from San Diego who is researching a new kind of anti-flu medicine using a combination of computer modelling and biological studies. He received the top prize of a $50,000 scholarship and a 10-day trip to the Galapagos Islands.

Alas, Makosinki felt the best part of the competition was getting to meet the other finalists in person at last.

It’s just so inspiring to see other people who are kind of like me and kind of want to make a difference in the community not just by talking about it but by actually doing stuff.

What’s next for the young inventor? Personally, I hope Makosinki and her fellow prize winners will be forming their own research group and looking for new and exciting ways to come up with renewable energy, recycling, vaccinations, and electronics. What do you think Makonsinky, Kumar, Bilgin, Chen? That’s what Andraka and his fellow finalists did after winning ISEF 2012, and they seem to be doing pretty good. So… hintedy, hint hint!

And be sure to enjoy this video of Ann Makosinki showing off her invention, courtesy of Technexo:


Sources:
cbc.ca, (2), gizmag.com, technexo.com, huffingtonpost.ca

News in Science: CERN Getting an Upgrade!

CERN_upgradeNot that long ago, the CERN laboratory announced that they had found the first evidence of the Higgs Boson. After this momentous discovery, many were left wondering what would be next for CERN and their instrument, the Large Hadron Collider. While they had confirmed that what they had found was a Higgs Boson, it might not necessarily be the Higgs Boson. Other such particles might exist, and questions about how these particles interact and explain the nature of the universe still need to be unlocked.

Well, it just so happens that this past April, the researchers who run the Large Hadron Collider (LHC) decided to take it offline so they could give it some long-awaited upgrades. These upgrades will take two years and cost a pretty penny, but once they are done, the LHC will be almost doubled in power and be able to do some pretty amazing things. First, they will be able to see if their Higgs Boson is the real deal, and not some random subatomic particle simply imitating its behavior.

Peter Higgs (who proposed the Higgs boson), hanging out at LHC’s CMS detector
Peter Higgs (who proposed the Higgs boson), at the LHC

After that, according to CERN, they will take on the next big step in their ongoing research, which will consist consist of testing the theory of supersymmetry. Having demonstrated the Standard Model of particle physics to be correct, which the existence of the Higgs Boson confirms, they are now seeking to prove or disprove the theory that seeks to resolve its hierarchy problems.

Originally proposed by Hironari Miyazawa in 1966, the theory postulates that in nature, symmetry exists between two elementary particles – bosons and fermions – which are partnered to each other. Not only does this theory attempt to resolve theoretical problems stemming from the Standard Model (such as how weak nuclear force and gravity interact), it is also a feature of Superstring Theory, which attempts to explain how all the forces of the universe coexist.

universe_expansionFor some time, scientists have been trying to ascertain how the four major forces of the universe  – electromagnetism, strong nuclear forces, weak nuclear forces, and gravity – interact. Whereas the first three can be explained through quantum theory, the fourth remains a holdout, explainable in terms of Einstein’s Theory of Relativity, but inconsistent with quantum physics. Because of this, scientists have long sought out the missing pieces of the puzzle, hoping to find the subatomic particles and relational forces that could explain all this.

A number of theories have emerged, such as Superstring and Loop Quantum Gravity, but testing them remains a very difficult process. Luckily, by the time the LHC comes back online in 2015, not only will the researchers at CERN be able to confirm that they have found the real Higgs Boson, they will also have a far better shot at unlocking the greater mysteries of the universe…

Exciting news, I just wish it didn’t take so long to upgrade the darn thing! At this rate, it could be decades before we get to see gravitons, the other bosons, or whatever the heck those subatomic particles are that hold the universe together. I don’t know about you, but I’m eager to see how it all works!

universe

Source: Extremetech.com

The “God Particle”… Found?

For decades, physicists have been searching for the elusive Higgs Boson, the elementary particle which will either confirm or deny the Standard Model of participle physics. This theory, in essence, is a unifying principle that explains how three of the four fundamental forces of the universe – electromagnetism, weak nuclear forces, and strong nuclear forces – interact. Intrinsic to it all is the understanding that all matter, at its most basic level, is constructed out of sub-atomic elementary particles. These particles, such as quarks, electrons, and neutrinos, endow all matter with its most basic properties.

Thanks to growing research in the fields of astrophysics, thermodynamics, quantum theory and particle physics, most of the elementary particles needed to make this model work have been discovered. Only one – the Higgs Boson, aka. “The God Particle” – remained to be found. Given that it is this particle which explains why other elementary particles have mass, its existence needed to be confirmed to make the model work. For decades, it has remained theoretical, but all that may have finally changed.

As of this morning, July 4th, 2012, physicists working with the Large Hadron Collider in Switzerland believe they have finally found it! That is to say that the CERN Laboratory (European Organization for Nuclear Research) announced the formal confirmation that a particle “consistent with the Higgs boson” exists with a very high likelihood of 99.99994%. However, scientists still need to verify that it is indeed the expected boson and not some other new particle.

In other words, we may be one step closer to (as Stephen Hawking said) “Understanding The Mind of God”. Which, given the alternative – that there are more elementary particles than the Standard Model accounts for – is good news indeed. Given that scientists still haven’t come up with a solid Grand Unifying theory, which would explain how all four basic forces of the universe interact with each other (electromagnetism, weak and strong nuclear forces and gravity), knowing that we can at least account for three would be good news indeed!

In the meantime, check out this video explaining more about the search for the “God Particle”:

Seeking “God Particle” (CBC.ca)