Powered by the Sun: Mirrored Solar Dishes

sun_magneticfieldIn the race to develop alternative energy sources, solar power is the undeniable top contender. In addition to being infinitely renewable So much sunlight hits the Earth each day that the world’s entire electricity needs could be met by harvesting only 2% of the solar energy in the Sahara Desert. Of course, this goal has remained elusive due to the problem of costs – both in the manufacture of solar panels and the installation therefor.

But researchers at IBM think they’re one step closer to making solar universally accessible with a low-cost system that can concentrate the sunlight by 2,000 times. The system uses a dish covered in mirrors to aim sunlight in a small area, and which follows the sun throughout the day to catch the most light. Other concentrated solar power systems do the same thing, but a typical system only converts around 20% of the incoming light to usable energy, while this one can convert 80%.

Inline_solardishThis not only ensures a much larger yield, but also makes the energy it harvests cheap. Bruno Michel, the manager for advanced thermal packaging at IBM Research, believes the design could be three-times cheaper than “comparable” systems. Officially, the estimate he provides claim that the cost per kilowatt hour will work out to less than 10 cents, which works out to 0.01 cents per watt (significantly cheaper than the $0.74 per watt of standard solar).

But as he explains, using simple materials also helps:

The reflective material we use for the mirror facets are similar to that of potato chip bags. The reinforced concrete is also similar to what is being used to build bridges around the world. So outside of the receiver, which contains the photovoltaic chips, we are using standard materials.

A few small high-tech parts will be built in Switzerland (where the prototype is currently being produced). but the main parts of the equipment could easily be built locally, wherever it’s being used. It’s especially well-suited for sunny areas that happen to be dry. As the system runs, it can use excess heat that would normally be wasted to desalinate water. Hence, a large installation could provide not only abundant electricity, but clean drinking water for an entire town.

inline-i-solar-02A combined system of this kind could be an incredible boon to economies in parts of the world that are surrounded by deserts, such as North Africa or Mongolia. But given the increasing risk of worldwide droughts caused by Climate Change, it may also become a necessity in the developed world. Here, such dishes could not only provide clean energy that would reduce our carbon footprint, but also process water for agricultural use, thus combating the problem on two fronts.

IBM researchers are currently working with partners at Airlight Energy, ETH-Zurich, and Interstate University of Applied Sciences Buchs NTB to finish building a large prototype, which they anticipate will be ready by the end of this summer. After testing, they hope to start production at scale within 18 months. Combined with many, many other plans to make panels cheaper and more effective, we can expect to be seeing countless options for solar appearing in the near future.

And if recent years are any indication, we can expect solar usage to double before the year is out.

Sources: fastcoexist.com

The Future is Here: Weight-Controlling Implants

genetic_circuitObesity is one of the greatest epidemics effecting children in the developed world, resulting in billions spent annually on fad diets, miracle foods, and exercise programs. But researchers ETH-Zurich have come up with a potential high-tech solution to the problem. It consists of an implant that monitors fat in the blood and, in response to elevated levels, it produces a substance that tells the body that it’s not hungry.

The method relies on a “genetic circuit”, a component that perform logical operations in living cells. Originally developed by Boston University biomedical engineers Ahmad S. Khalil and James J. Collins, the regulatory circuit is put together using mostly biological components. These consisted of several genes that generate particular proteins and reactions. This compound was inserted into tiny capsules.

weight_control_implantThe circuit essentially performs two functions: monitoring the circulating fat levels in the blood, and then, in the event of detecting excess levels, produces a messenger substance that conveys a cognitive response that tells the user they are full and sated. For the sake of the experiment, the mice were continually given high-fat foods. As ETH-Zurich professor Martin Fussenegger explained in a statement:

Instead of placing the mice on a diet to achieve weight loss, we kept giving the animals as much high-calorie food as they could eat.

The implants responded as expected, causing the obese mice to stop their excessive eating, and their bodyweight dropped noticeably as a result. Once their blood-fat levels returned to normal, the implant stopped producing the fullness signal. As for the control group, mice that received normal animal feed with a 5% fat content did not lose any weight or reduce their intake of food.

?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????Interestingly, the sensor can also detect different types of fat, including saturated and unsaturated animal and vegetable fats — even when they’re all ingested at the same time. This allows people to continue to take in the kinds of fats their bodies depend upon – such as Omega fatty acids and unsaturated fats – while limiting their intake of saturated fat, something we as a society get far too much of.

But of course, there are challenges in adapting this technology for human used. The researchers caution that it will take several more years to develop an implant that do the same job for the human body. But given the exponential rate of development with medical and health-monitoring implants, we can expect to be seeing a full range of weight-control or even diet-specific and allergen-detecting implants before long.

genetic_circuit_MITIn addition to weight loss, this and other breakthroughs like it could facilitate the development of artificial cells designed to solve problems in medicine, energy, and the environment. It’s also a major step towards an age where people are able to manipulate their own biochemistry, and the building blocks of nature, at a microscopic level. Another step forward towards the nanotechnological revolution!

Sources: IO9.com, (2)