The Future is Here: The Soft Robotic Exosuit

aliens_powerloaderRobotic exoskeletons have come a long way, and are even breaking the mold. When one utters the term, it tends to conjure up images of a heavy suit with a metal frame that bestows the wearer super-human strength – as exemplified by Daewoo’s robot worker suits. And whereas those are certainly making an impact, there is a burgeoning market for flexible exoskeletons that would assist with everyday living.

Researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering have developed just such a device, a flexible fabric exoskeleton that earned them a $2.9 million grant by DARPA to continue developing the technology. Unlike the traditional exoskeleton concept, Harvard’s so-called “Soft Exosuit” is not designed to give the wearer vastly increase lifting capacity.

Exosuit-640x353Instead, the Soft Exosuit works with the musculature to reduce injuries, improve stamina, and enhance balance even for those with weakened muscles. In some ways, this approach to wearable robotics is the opposite of past exoskeletons. Rather than the human working within the abilities and constraints of the exoskeleton, the exoskeleton works with the natural movements of the human wearer.

The big challenge of this concept is designing a wearable machine that doesn’t get in the way. In order to address this, the Wyss Institute researchers went beyond the usual network of fabric straps that hold the suit in place around the user’s limbs. In addition, they carefully studied the way people walk and determined which muscles would benefit from the added forces offered by the Exosuit.

softexosuitWith a better understanding of the biomechanics involved, the team decided to go with a network of cables to transmit forces to the joints. Batteries and motors are mounted at the waist to avoid having any rigid components interfering with natural joint movement. This allows the wearer the freedom to move without having to manually control how the forces are applied.

Basically, the wearer does not have to push on a joystick, pull against restraints, or stick to a certain pace when walking with the Exosuit. The machine is supposed to work with the wearer, not the other way around. The designers integrated a network of strain sensors throughout the straps that transmit data back to the on-board microcomputer to interpret and apply supportive force with the cables.

Warrior_Web_Boston_Dynamics_sentDARPA is funding this project as part of the Warrior Web program, which seeks to reduce musculoskeletal injuries for military personnel. However, Harvard expects this technology to be useful in civilian applications as well. Anyone who needs to walk for long periods of time at work could benefit from the Soft Exosuit, which is less expensive and more comfortable that conventional exosuits; and with a little rescaling, could even be worn under clothing.

But the greatest impact of the Soft Exosuit is likely to be for those who suffer from a physical impairment and/or injuries. Someone that has trouble standing or walking could possibly attain normal mobility with the aid of this wearable robot. And people working their way through physiotherapy would find it very useful in assisting them with restoring their muscles and joints to their usual strength.

exosuit_cyberdyneHALThe team plans to collaborate with clinical partners to create a version of the exosuit for just this purpose. What the Wyss Institute has demonstrated so far has just been the general proof-of-concept for the Soft Exosuit. In time, and with further refinements, we could see all sorts of versions becoming available – from the militarized to the medical, from mobility assistance for seniors, to even astronauts looking to prevent atrophy.

And as always, technology that is initially designed to assist and address mobility issues is likely to give way to enhancement and augmentation. It’s therefore not hard to imagine a future where soft robotic exosuits are produced for every possible use, including recreation and transhumanism. Hell, it may even be foreseeable that an endoskeleton will be possible in the not-too-distant future, something implantable that can do the same job but be permanent…

Cool and scary! And be sure to check out this video from the Wyss Institute being tested:

 

 


Source:
extremetech.com
, wyss.harvard.edu, darpa.mil

World Cup 2014 to Open with Exoskeleton Kick

WorldCup_610x343This summer, the World Cup 2014 will be taking place in Sao Paulo, Brazil; an event that is sure to be a media circus. And to kick off this circus (no pun!), FIFA has decided to do something rather special. This will consist of a paralyzed teenager making the ceremonial first kick, courtesy of an exoskeleton provided by The Walk Again Project. In addition to opening the games, this even will be the first time that a mind-controlled prosthetic will ever be used in a sporting event.

Though the teenager in question remains to be chosen, the event is scheduled and the exoskeleton tested and ready. Using metal braces that were tested on monkeys, the exoskeleton relies on a series of wireless electrodes attached to the head that collect brainwaves, which then signal the suit to move. The braces are also stabilized by gyroscopes and powered by a battery carried by the kicker in a backpack.

ReWalk1The Walk Again Project, a nonprofit collaboration dedicated to producing full-body mind-controlled prosthetics, represents a collaboration between such academic institutions as Duke University, the Technical University of Munich, the Swiss Federal Institute of Technology in Lausanne, the Edmond and Lily Safra International Institute of Neuroscience of Natal in Brazil, the University of California at Davis, the University of Kentucky, the Duke Immersive Virtual Environment facility.

Miguel Nicolelis, the Brazilian neuroscientist at Duke University who is leading the Walk Again Project’s efforts to create the robotic suit, had this to say about the planned event:

We want to galvanize people’s imaginations. With enough political will and investment, we could make wheelchairs obsolete.

miguelnicolelis_secom508x339Nicolelis is a pioneer in the field of mind-controlled prosthetics. In the 1990s, he helped build the first mind-controlled arm, which rats learned to manipulate so they could get a drink of water, simply by thinking about doing so. In that project, an electronic chip was embedded in the part of each rodent’s brain that controls voluntary muscle movements. Rows of wires that stuck out from the chip picked up electrical impulses generated by brain cells and relayed those signals to a computer.

Researchers studied the signals as the rats pushed a lever to guide the arm that gave them water, and they saw groups of neurons firing at different rates as the rats moved the lever in different directions. An algorithm was developed to decipher the patterns, discern the animal’s intention at any given moment and send commands from the brain directly to the arm instead of to the lever. Eventually, the rats could move the arm without pushing the lever at all.

neuronsUsing similar brain-machine interfaces, Nicolelis and his colleagues learned to translate the neural signals in primate brains. In 2000, they reported that an owl monkey connected to the Internet had controlled an arm located 600 miles away. Eight years later, the team described a rhesus monkey that was able to dictate the pace of a robot jogging on a treadmill half a world away in Japan.

Small groups of neurons, it seems, are surprisingly capable of communicating with digital devices. Individual cells learn to communicate with computer algorithms more effectively over time by changing their firing patterns, as revealed in a study of a mouse’s brain published last year in Nature. This capacity for extensive plasticity and the ability to learn comes in quite handy when designing a prosthetic.

exoskeleton_FIFA2014German-made sensors will relay a feeling of pressure when each foot touches the ground. And months of training on a virtual-reality simulator will have prepared the teenager — selected from a pool of 10 candidates — to do all this using a device that translates thoughts into actions. In an interview with New Scientist, the lead robotic engineer Gordon Cheng of the Technical University of Munich gave some indication of how the suit works

The vibrations can replicate the sensation of touching the ground, rolling off the toe and kicking off again. There’s so much detail in this, it’s phenomenal.

Capitalizing on that adaptability, several human quadriplegics have received implanted brain chips in FDA-approved clinical trials. One of the first was Matt Nagle, who lost the use of his extremities after being stabbed in the spine. With the aid of electrodes placed in his brain at Brown University in 2004, he learned to raise, lower and drop a piece of hard candy using a primitive jointed arm not connected to his body.

woman-robotic-arm_650x366In a widely publicized demonstration of that system, now owned by a company called BrainGate, a 58-year-old woman paralyzed by a stroke sipped a cup of coffee last year using a five-fingered robotic arm not attached to her body. Despite the slickness of the presentation, however, the woman actually had little control over the arm. Despite it being aesthetically pleasing, the design was a little rudimentary.

However, things have come a long way since then thanks to ongoing research, development and testing. In Nicolelis’s lab, monkeys showed the ability to feel virtual objects displayed on a computer screen when areas of the brain associated with the sense of touch were stimulated. The blueprints for next summer’s soccer exoskeleton include similar sensors that will provide an artificial skin for its human wearer, thus ensuring that they can both move the device and receive sensory feedback.

Walk-Again-Project-Kick-Ball-537x358With the world watching, Nicolelis hopes not only that his “bionic teenager” will be able to feel the ball but also that disabled people everywhere will feel a sense of hope. And why wouldn’t they? In this single, incredibly high-profile event, millions of people around the world who struggle with disabilities will witness something truly inspirational. A paralyzed teenager will rise from a wheelchair, kicks the World Cup ball, and bring countless millions to their feet.

And you’re waiting until June of 2014 to see this momentous event for yourselves, be sure to check out this promotional video from The Walk Again Project, featuring interviews with the people who made it happen and showcasing the exoskeleton itself:


Sources: news.cnet.com, washingtonpost.com, virtualreality.duke.edu

 

The Future of 3D Printing: Exoskeletons and Limbs

???????????????????????3-D printing is leading to a revolution in manufacturing, and the list of applications grows with each passing day. But more important is the way it is coming together with other fields of research to make breakthroughs  more affordable and accessible. Nowhere is this more true than in the fields of robotics and medicine, where printing techniques are producing a new generation of bionic and mind-controlled prosthetics.

For example, 3D Systems (a an additive manufacturing company) and EksoBionics (a company specializing in bionic prosthetic devices) recently partnered to produce the new “bespoke” exoskeleton that will restore ambulatory ability to paraplegics. The prototype was custom made for a woman named Amanda Boxtel, who was paralyzed in 1992 from a tragic skiing accident.

3d_amanda2Designers from 3D Systems began by scanning her body, digitizing the contours of her spine, thighs, and shins; a process that helped them mold the robotic suit to her needs and specifications. They then combined the suit with a set of mechanical actuators and controls made by EksoBionics. The result, said 3D Systems, is the first-ever “bespoke” exoskeleton.

Intrinsic to the partnership between 3D Systems and EksoBionics was the common goal of finding a way to fit the exoskeleton comfortably to Boxtel’s body. One of the greatest challenges with exosuits and prosthetic devices is finding ways to avoid the hard parts bumping into “bony prominences,” such as the knobs on the wrists and ankles. These areas as not only sensitive, but prolonged exposure to hard surfaces can lead to a slew of health problems, given time.

3d-printed-ekso-suit-frontAs Scott Summit, the senior director for functional design at 3D Systems, explained it,:

[Such body parts] don’t want a hard surface touching them. We had to be very specific with the design so we never had 3D-printed parts bumping into bony prominences, which can lead to abrasions [and bruising].

One problem that the designers faced in this case was that a paralyzed person like Boxtel often can’t know that bruising is happening because they can’t feel it. This is dangerous because undetected bruises or abrasions can become infected. In addition, because 3D-printing allows the creation of very fine details, Boxtel’s suit was designed to allow her skin to breathe, meaning she can walk around without sweating too much.

3d_amandaThe process of creating the 3D-printed robotic suit lasted about three months, starting when Summit and 3D Systems CEO Avi Reichenthal met Boxtel during a visit to EksoBionics. Boxtel is one of ten EksoBionics “test pilots”, and the exoskeleton was already designed to attach to the body very loosely with Velcro straps, with an adjustable fit. But it wasn’t yet tailored to fit her alone.

That’s where 3D Systems came into play, by using a special 3D scanning system to create the custom underlying geometry that would be used to make the parts that attach to the exoskeleton. As Boxtel put it:

When the robot becomes the enabling device to take every step for the rest of your life. the connection between the body and the robot is everything. So our goal is to enhance the quality of that connection so the robot becomes more symbiotic.

3D_DudleyAnd human beings aren’t the only ones who are able to take advantage of this marriage between 3-D printing and biomedicine. Not surprisingly, animals are reaping the benefits of all the latest technological breakthroughs in these fields as well, as evidenced by the little duck named Dudley from the K911 animal rescue service in Sicamous, Canada.

Not too long ago, Dudley lost a leg when a chicken in the same pen mauled him. But thanks to a 3-D printed leg design, especially made for him, he can now walk again. It was created by Terence Loring of 3 Pillar Designs, a company that specializes in 3D-printing architectural prototypes. After hearing of Dudley’s plight through a friend, he decided to see what he could do to help.

3D_buttercupfootUnlike a previous printed limb, the printed foot that was fashioned for Buttercup the Duck, Loring sought to create an entire limb that could move. The first limb he designed had a jointed construction, and was fully 3D-printed in plastic. Unfortunately, the leg broke the moment Dudley pit it on, forcing Loring to go back to the drawing board for a one-piece printed from softer plastic.

The subsequent leg he created had no joints and could bend on its own. And when Dudley put it on, he started walking straight away and without hesitation. Issues remain to be solved, like how to prevent friction sores – a problem that Mike Garey (who designed Buttercup’s new foot) solved with a silicone sock and prosthetic gel liner.

3D_Dudley2Nevertheless, Dudley is nothing if not as happy as a duck in a pond, and it seems very likely that any remaining issues will be ironed out in time. In fact, one can expect that veterinary medicine will fully benefit from the wide range of 3D printed prosthetic devices and even bionic limbs as advancement and research continues to produce new and exciting possibilities.

And in the meantime, enjoy the following videos which show both Amanda Boxtel and Dudley the duck enjoying their new devices and the ways in which they help bring mobility back to their worlds:

 

Amanda Boxtel taking her first steps in 22 years:

 


Dudley the duck walking again:


Sources: news.cnet.com, (2), (3), 3dsystems.com, 3pillardesigns.com

New Trailer: Elysium!

elysium_posterLast weekend, while the wife, our friend and I were all watching the new Star Trek movie, a number of trailers came on that made us antsy for other “coming attractions”! One of them was one I instantly recognized and began saying the title of long before they flashed it across the screen. Months back, when this movie was first announced, I posted the trailer here because it looked to have all the things I love in sci-fi story. And they have since come out with a longer, more detailed trailer which I share now…

Elysium tells the story of a dystopian future, set in 2154, where the wealthy and privileged live in an orbital colony that is peaceful, serene, idyllic, and sees to all their needs (and looks a lot like the station from Space Odyssey). Meanwhile, the remaining 99% of humanity live planetside, where pollution, environmental collapse and economic ruin have made Earth into a veritable hellhole.

elysium_stationEnter into this Max De Costa (played by a cueballed Matt Damon), a man who is near death who comes to learn of a secret that could topple the whole system and achieve a degree of social justice. In order to do this, he has to break into Elysium, a facility that is heavily guarded and run by Secretary Rhodes (Jodie Foster), and undergoes a radical surgery to get an exoskeleton and some powerful weaponry permanently attached.

Directed by Neil Blomkamp – the South-African director who brought us District 9 and provided visual effects for such shows as Star Gate: SG-1, Smallville and Dark Angel – this movie clearly boasts the same kind of gritty, realistic texture he has come to be known for. And after the 2008 Financial Crisis and the subsequent Occupy Movement, it’s message is pretty timely and likely to be well-received.

elysium-1As for me? You can keep your social commentary and comparisons to other movie franchises, I wanna see me some exoskeleton battles! Enjoy the trailer:

Robots Meet the Fashion Industry

robot_fashionRobotics has come a long way in recent years. Why, just take a look at NASA’s X1 Robotic exoskeleton, the Robonaut, robotaxis and podcars, the mind-controlled EMT robot suit, Stompy the giant robot, Kenshiro and Roboy, and the 3D printed android. I suppose it was only a matter of time before the world of fashion looked at this burgeoning marketplace and said “me too!”

And here are just some of the first attempts to merge the two worlds: First up there’s the robot mannequin, a means of making window shopping more fun for consumers. Known as the MarionetteBot, this automaton has already made several appearances in shops in Japan and can expected to be making debut appearances across Asia, in North America and the EU soon enough!

Check out the video below to see the robot in action. Designed by the Japanese robotics company United Arrows, the mannequin uses a Kinect to capture and help analyze the movements of a person while a motor moves a total of 16 wires to match the person’s pose. Though it is not yet fast or limber enough to perfectly mimic the moves of a person, the technology shows promise, and has provided many a window-shopper with plenty of entertainment!


And next up, there’s the equally impressive FitBot, a shape-shifting mannequin that is capable of emulating thousands of body types. Designed by the British virtual shopping company Fits.Me, the FitBot is designed to help take some of the guesswork out of online shopping, where a good 25% of purchases are regularly returned because they were apparently the wrong size.

But with the FitBots, along with a virtual fitting room, customers will be able to see right away what the clothes will look like on them. The only downside is you will have to know your exact measurements, because that’s what the software will use to adjust the bot’s body. Click here to visit the company’s website and see how the virtual fitting room works, and be sure to check out there video below:


What does the future hold for the fashion industry and high-tech? Well, already customers are able to see what they look like using Augmented Reality technology displays, and can get pictures thanks to tablet and mobile phone apps that can present them with the image before making a purchase. Not only does it take a lot of the legwork out of the process, its much more sanitary as far as trying on clothes is concerned. And in a world where clothing can be printed on site, it would be downright necessary.

The "magic mirror"
The “magic mirror”

But in the case of online shopping, its likely to take the form of a Kinect device in your computer, which scans your body and lets you know what size to get. How cool/lazy would that be? Oh, and as for those AR displays that put you in the clothes you want? They should come with a disclaimer: Objects in mirror are less attractive than they appear!

Source: en.akihabaranews.com, technabob.com

The Future is Here: The Mind-Controlled Robot Suit

cyberdyneBack in October, some rather interesting news came out of Japan. It appears that a research company known as Cyberdyne produced a robot suit named HAL. No joke, the company is seriously named after the company from Terminator franchise that developed Skynet and the robot suit – who’s name stands for Hybrid Assisted Limb – is named after the HAL 9000 from 2001: A Space Odyssey.

Still, the company is the legit and the new robotic suit is quite impressive. Like many before it, it is a powered suit that gives the wearer enhanced strength and protection. But unlike previous models, this one comes equipped with a network of sensors that monitor the electric signals coming from the wearer’s brain, allowing them to seamlessly control the suit’s movements.

This is expected to remedy a problem which has plagued exoskeletons since their inception, which is the problem of speed. While all exos allow for greater strength and load-bearing capacity, the motors that power the limbs tend to respond slowly to the users commands. By anticipating the wearer’s movements by reading them directly from the brain, this new suit will be able to move in synchronicity with the wearer’s limbs.

The suit is also expected to be helpful with Japan’s ongoing cleanup efforts with the crippled Fukushima nuclear power plant. In addition to the new mind-control interface, the suit’s load-bearing capacities are expected to come in handy for workers who are forced to wear a 60 kg (132 lbs) tungsten vest while working in radiation zones. Even for a husky man, that’s quite the load to bear on top of all the additional weight they’ll need to be carrying.

Naturally, there are anticipated hazards as well, like what will happen if the power supply were to suddenly run out. Essentially, the wearer would be trapped inside. However, these and other bugs are expected to be addressed before any units are pressed into service. And with luck, suits like these could available for HazMat workers, construction crews, and people who work in dangerous conditions in just a few years time.

Source: japandailypress.com

NASA’s X1 Robotic Exoskeleton

It may not be Iron Man, but it’s certainly a step in that direction. It’s known as the X1 Robotic Skeleton, a spinoff of their earlier Robonaut 2 project. Designed specifically to assists astronauts with either exercising in space, performing difficult tasks, or restoring movement to astronauts who have suffered from paralysis, the X1 is a big leap forward in terms of ergonomics and man-machine interface.

The exoskeleton is powered by four motorized joints and six passive joints, all of which give the 57 pound suit a good range of motion. When set to exercise mode, it provides resistance to the astronauts movement, ensuring that their muscles get the exercise they need while in zero-g environments. The rest of the time, the motors provide enough force to allow an astronaut to get a full range of motion and maintain full ambulatory capabilities.

A joint effort between NASA, The Florida Institute for Human and Machine Cognition, and the awesomely named Oceaneering Space Systems, the X1 is still deep in the research and development phase. Still, the suit could some day be used both in space and on Earth. In that respect, it is not unlike ReWalk and other robotic systems that are currently employed by the military which are used to help restore motion to the paralyzed and assist people in power lifting. Soon, the word “disability” will be entirely without meaning and “power lifters” will have to be redefined!

Check out this video of the X1 in action and/or click on the link below for more on this story.


Source: news.cnet.com