Some New Articles from HeroX

fusion-quotepanel-reactorI know, I promised I would stop doing this. But the other publication I started writing for – HeroX – now has two new articles written by yours truly. Luckily, I have now added pages for both this website and Universe Today so you can see any news ones that have been added to the queue. If you feel like it, that is 😉

My most recent article for HeroX was about the promise of cold fusion, which is getting very close to realization. In the past few years, a number of developments have been made that is making the technology more practical, more cost-effective, and even more compact.

https://herox.com/news/134-is-fusion-the-way-of-the-future/

And here is my first installment for HeroX, which deals with the burgeoning trend of flying cars. Sure, they may be fourteen years late – weren’t we promised flying cars by the 21st century? – and they still aren’t quite affordable. But progress is being made!

https://herox.com/news/133-the-case-for-flying-cars/

Powered by the Sun: Solar Buildings and Wind Towers

Magnificent CME Erupts on the Sun - August 31In our ongoing drive to find ways to meet energy demands in a clean and sustainable way, solar power is the clearly the top contender. While inroads have certainly been made in terms of fusion technology, the clean, abundant, and renewable power that can be derived from our sun seems to hold the most promise. In addition to the ever-decreasing costs associated with the manufacture and installation of solar cells, new applications that are appearing all the time that allow for greater usage and efficiency.

Consider the following example that comes from Seoul, Korea, where Hanwa – the largest solar company in the world – has chosen to retrofit its aging headquarters with a solar facade that will provide both for the buildings needs and cut down on energy costs. Having been built in the 1980’s, the Hanwa building is part of a global problem. High-rise buildings suck up around 16% of the world’s energy, and most were built to specifications that do not include sustainability or self-sufficiency.

solar_skyscraper3Even though the most recently-built skyscrapers are helping change things by employing renewable energy and sustainable methods – like the Pertamina Energy Tower in Jakarta –  that still leaves tens of thousands of inefficient giant buildings on the ground. And rather than tear them down and erect new buildings in their place, which would be very wasteful and inefficient, it is possible to convert these buildings into something cleaner and less reliant on other external sources of electricity.

Basically, the plan calls for plastering the 29-story building with three-hundred new solar panels. These will be placed on the sunniest spots to harvest energy, and other strategically placed panels will automatically adjust to help keep the interior cool but bright with natural light. New high-performance windows will save more energy. In total, though the final details are still in progress, the retrofit may save well over a million kilowatt-hours of electricity each year.

solar_skyscraper2In theory, say designers from Amsterdam-based UNStudio, this type of facade could be added onto any skyscraper. As the researcher explains:

It would be the principles that could be applied of course and not the design, as every building has its own context, program, size, view corridors, orientation etc. which would affect the design parameters differently. Each building would be unique and would require a tailored approach.

Retrofitting old skyscrapers is an important way for cities to fight climate change, say engineers from ARUP, which worked with UNStudio on optimizing the design. And it’s usually a better solution than building something brand new. Accroding to Vincent Cheng, who led the project from ARUP’s Hong Kong studio, retrofitting is a better option for old skycrapers, both in “terms of reducing embodied carbon emission and waste elimination.”

solar_downdraft_towerAt the other end of things, there are the ongoing efforts to expand solar power production to the point that it will supersede coal, hydro, and nuclear in terms of electrical generation. And that’s the idea behind the Solar Downdraft Tower, a proposed installation some 686 meters (2,250 feet) in height with 120 huge turbines and enough pumping capacity to keep more than 2.5 billion gallons of water circulating. In terms of output, it would generate the equivalent of wind turbines spread over 100,000 acres, or as big as the Hoover Dam.

The process is quite simple: water is sprayed at the top, causing hot air to become heavy and fall through the tower. By the time it reaches the bottom, it’s reaching speeds of up to 80 km (50 miles) per hour, which is ideal for running the turbines. The immediate advantage over standard solar and wind energy is the plant runs continuously, day and night. This addresses the issue of intermittency, which remains a problem with solar and wind generation.

solar_downdraft_tower2Basically, solar and wind farms cannot provide if the weather is not cooperating, or if the solar cells become covered in dust or sand. But as long as the local environment remains warm enough – a near certainty in the deserts of Arizona – the tower will continue to produce power. Best of all, the plant itself runs under its own generated energy – with approx. 11% of the output being used to power the pumps – and aboutt three-quarters of the water is collected at the bottom.

According to Ron Pickett, CEO of Solar Wind Energy Tower (the Maryland company behind the design):

This is totally clean energy that actually makes money. It makes energy at a cost comparable to if you were using natural gas to power a plant.

The simplicity of the technology is also a major selling point. For more than a century, people have been working on variants of solar wind towers. In the 1980s, engineers in Spain built a 195 meter (640-foot) test tower that pushed air upwards through turbines and generated power for seven years until it fell over in a storm. The tougher issue is the enormous expense, which is an inevitable result of building something so big. According to Picket, the Arizona project is likely to cost as much as $1.5 billion to build.

solar_downdraft_tower1However, Solar Wind Energy recently jumped two hurdles to getting the tower realized. First, it won a development rights agreement from San Luis, a city on the Mexico border, that included a deal with the local utility to purchase power, and the rights to the 2.5 billion gallons of water necessary to the project. It also reached an agreeing with National Standard Finance, an infrastructure fund, for preliminary funding that will begin to pay for generating equipment and related costs.

Solar Wind Energy also has plans to see similar towers build in Chile, India, and the Middle East, places that are also well suited to turn warm air temperatures into electrical power. And they are hardly alone in looking for ways to turn solar power into abundant electricity in ways that are technically very simple. As the 2010s roll on, we can expect to see more and more examples of this as renewables make their way into the mainstream.

In the meantime, check out this video from Solar Wind Energy that details how their Tower concept works:


Sources:
fastcoexist.com, (2)

The Future is Fusion: Surpassing the “Break-Even” Point

JET_fusionreactorFor decades, scientists have dreamed of the day when cold fusion – and the clean, infinite energy it promises – could be made possible. And in recent years, many positive strides have been taken in that direction, to the point where scientists are now able to “break-even”. What this means is, it has become the norm for research labs to be able to produce as much energy from a cold fusion reaction as it takes in triggering that reaction in the first place.

And now, the world’s best fusion reactor – located in Oxfordshire, Engand – will become the first fusion power experiment to attempt to surpass it. This experiment, known as the Joint European Torus (JET), has held the world record for fusion reactor efficiency since 1997. If JET can reach break-even point, there’s a very good chance that the massive International Thermonuclear Experimental Reactor (ITER) currently being built in France will be able to finally achieve the dream of self-sustaining fusion. 

NASA_fusionchamber

Originally built in 1983, the JET project was conceived by the European Community (precursor to the EU) as a means of making fusion power a reality. After being unveiled the following year at a former Royal Navy airfield near Culham in Oxfordshire, with Queen Elizabeth II herself in attendance, experiments began on triggering a cold fusion reaction. By 1997, 16 megawatts of fusion power were produced from an input power of 24 megawatts, for a fusion energy gain factor of around 0.7.

Since that time, no one else has come close. The National Ignition Facility – the only other “large gain” fusion experiment on the planet, located in California – recently claimed to have broken the break-even point with their  laser-powered process. However, these claims are apparently mitigated by the fact that their 500 terrawat process (that’s 500 trillion watts!) is highly inefficient when compared to what is being used in Europe.

NIF Livermore July 2008Currently, there are two competing approaches for the artificial creation of nuclear fusion. Whereas the NIF uses “inertial confinement” – which uses lasers to create enough heat and pressure to trigger nuclear fusion – the JET project uses a process known as “magnetic confinement”. This process, where deuterium and tritium fuel are fused within a doughnut-shaped device (a tokamak) and the resulting thermal and electrical energy that is released provides power.

Of the two, magnetic confinement is usually considered a better prospect for the limitless production of clean energy, and this is the process the 500-megawatt ITER fusion reactor once its up and running. And while JET itself is a fairly low-power experiment (38 megawatts), it’s still very exciting because it’s essentially a small-scale prototype of the larger ITER. For instance, JET has been upgraded in the past few years with features that are part of the ITER design.

fusion_energyThese include a wall of solid beryllium that can withstand being bombarded by ultra-high-energy neutrons and temperatures in excess of 200 million degrees. This is a key part of achieving a sustained fusion reaction, which requires that a wall is in place to bounce all the hot neutrons created by the fusion of deuterium and tritium back into the reaction, rather than letting them escape. With this new wall in place, the scientists at JET are preparing to pump up the reaction and pray that more energy is created.

Here’s hoping they are successful! As it stands, there are still many who feel that fusion is a pipe-dream, and not just because previous experiments that claimed success turned out to be hoaxes. With so much riding on humanity’s ability to find a clean, alternative energy source, the prospects of a breakthrough do seem like the stuff of dreams. I sincerely hope those dreams become a reality within my own lifetime…

Sources: extremetech.com, (2)

The Future of Fusion: Milestone Hit Amidst Funding Fears

fusion_reactorThe National Ignition Facility (NIF) in Livermoore, California has made quite a bit of headlines lately. But when you’re goal is to harness fusion power – a clean, unlimited and cheap source of energy – that is abound to happen. For decades, the challenge of harnessing fusion has been to create a process that produces more energy than it consumes; a goal which has remained elusive.

However, a recent breakthrough at NIF has brought us all one step closer to viability. Apparently, the breakthrough happened in late September, where the amount of energy released through the latest controlled fusion reaction exceeded the amount of energy being absorbed by the fuel. This was the first time this had been achieved at any fusion facility anywhere in the world.

fusion_energyNIF, based at Livermore in California, uses 192 beams from the world’s most powerful laser to heat and compress a small pellet of hydrogen fuel to the point where nuclear fusion reactions take place. Viability, in this case, meant producing more energy from a fusion reaction than was consumed by the lasers themselves and any inefficiencies that cost power along the way.

As already noted, this breakthrough has been decades in the making. After nearly 50 years of experimentation and failure, the NIF announced in 2009 that its aim was to demonstrate nuclear fusion producing net energy by 30 September 2012. But unexpected technical problems ensured the deadline came and went; the fusion output was less than had originally been predicted by mathematical models.

NIF Livermore July 2008Soon after, the $3.5 billion facility shifted focus, cutting the amount of time spent on fusion versus nuclear weapons research – which was part of the lab’s original mission. However, the latest experiments showed that net energy  output is possible, which in turn will provide a welcome boost to ignition research at NIF as well as encouraging fusion research in general.

Despite this breakthrough, there are worries that the research will not be able to continue. Thanks to the government shutdown, federal funding for major research labs like the NIF is threatened. A suspension in funding can be just as harmful as it being cut off altogether, as delays at a crucial juncture can mean all progress will be lost.

NASA_coldfusionLuckily, the NIF is just one of several projects around the world aimed at harnessing fusion. They include the multi-billion-euro ITER facility, currently under construction in Cadarache, France. However, ITER will take a different approach to the laser-driven fusion, using magnetic fields to contain the hot fusion fuel – a concept known as magnetic confinement.

What’s more, NASA’s own research into cold fusion that relies on weak nuclear forces – as opposed to strong ones – is likely to continue, regardless of whether it meets the requirements for emergency exemption. And given that the prize of this research is a future where all our energy needs are provider for using a cheap, abundant, clean alternative, there is no way we’re stopping now!

Sources: bbc.co.uk, IO9.com