Restoring Ability: Project NEUWalk

neuwalkIn the past few years, medical science has produced some pretty impressive breakthroughs for those suffering from partial paralysis, but comparatively little for those who are fully paralyzed. However, in recent years, nerve-stimulation that bypasses damaged or severed nerves has been proposed as a potential solution. This is the concept behind the NEUWalk, a project pioneered by the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland.

Here, researchers have figured out a way to reactivate the severed spinal cords of fully paralyzed rats, allowing them to walk again via remote control. And, the researchers say, their system is just about ready for human trials. The project operates on the notion that the human body requires electricity to function. The brain moves the body by sending electrical signals down the spinal cord and into the nervous system.

spinal-cord 2When the spinal cord is severed, the signals can no longer reach that part of the spine, paralysing that part of the body. The higher the cut, the greater the paralysis. But an electrical signal sent directly through the spinal cord below a cut via electrodes can take the place of the brain signal, as the team at EPFL, led by neuroscientist Grégoire Courtine, has discovered.

Previous studies have had some success in using epidural electrical stimulation (EES) to improve motor control where spinal cord injuries are concerned. However, electrically stimulating neurons to allow for natural walking is no easy task, and it requires extremely quick and precise stimulation. And until recently, the process of controlling the pulse width, amplitude and frequency in EES treatment was done manually.

brainwavesThis simply isn’t practical, and for two reasons: For starters, it is very difficult for a person to manually adjust the level of electrostimulation they require to move their legs as they are trying to walk. Second, the brain does not send electrical signals in an indiscriminate stream to the nerves. Rather, the frequency of the electrical stimulation varies based on the desired movement and neurological command.

To get around this, the team carefully studied all aspects of how electrical stimulation affects a rat’s leg movements – such as its gait – and was therefore able to figure out how to stimulate the rat’s spine for a smooth, even movement, and even take into account obstacles such as stairs. To do this, the researchers put paralyzed rats onto a treadmill and supported them with a robotic harness.

NEUWalk_ratsAfter several weeks of testing, the researchers had mapped out how to stimulate the rats’ nervous systems precisely enough to get them to put one paw in front of the other. They then developed a robust algorithm that could monitor a host of factors like muscle action and ground reaction force in real-time. By feeding this information into the algorithm, EES impulses could be precisely controlled, extremely quickly.

The next step involved severing the spinal cords of several rats in the middle-back, completely paralyzing the rats’ lower limbs, and implanted flexible electrodes into the spinal cord at the point where the spine was severed to allow them to send electrical signals down to the severed portion of the spine. Combined with the precise stimulation governed by their algorithm, the researcher team created a closed-loop system that can make paralyzed subjects mobile.

walkingrat.gifAs Grégoire Courtine said of the experiment:

We have complete control of the rat’s hind legs. The rat has no voluntary control of its limbs, but the severed spinal cord can be reactivated and stimulated to perform natural walking. We can control in real-time how the rat moves forward and how high it lifts its legs.

Clinical trials on humans may start as early as June 2015. The team plans to start testing on patients with incomplete spinal cord injuries using a research laboratory called the Gait Platform, housed in the EPFL. It consists of a custom treadmill and overground support system, as well as 14 infrared cameras that read reflective markers on the patient’s body and two video cameras for recording the patient’s movement.

WorldCup_610x343Silvestro Micera, a neuroengineer and co-author of the study, expressed hope that this study will help lead the way towards a day when paralysis is no longer permanent. As he put it:

Simple scientific discoveries about how the nervous system works can be exploited to develop more effective neuroprosthetic technologies. We believe that this technology could one day significantly improve the quality of life of people confronted with neurological disorders.

Without a doubt, restoring ambulatory ability to people who have lost limbs or suffered from spinal cord injuries is one of the many amazing possibilities being offered by cutting-edge medical research. Combined with bionic prosthetics, gene therapies, stem cell research and life-extension therapies, we could be looking at an age where no injury is permanent, and life expectancy is far greater.

And in the meantime, be sure to watch this video from the EPFL showing the NEUWalk technology in action:


Sources:
cnet.com, motherboard.com
, actu.epfl.ch

3-D Printed Cancer Cures and Diabetes Tests

future_medicineOne of the greatest benefits of additive manufacturing (aka. 3-D printing) is the way it is making everything – from finished goods to electronic devices – cheaper and more accessible. Modern medicine is also a beneficiary of this field of technology, with new tests and possibilities being produced all the time. In recent weeks, researchers have announced ways in which it might even help lead to a cure for cancer and combat one of the greatest health epidemics of the world.

When it comes to testing cancer drugs, researchers rely on the traditional two-dimensional method of seeing how they work on cancer cells within the confines of a Petri dish. If the drug works well, they move onto the next stage where they see how the drug deals with 3-D tumors in animals. If that goes well, then, finally, researchers start clinical trials on humans. But if it were possible to test these drugs in a 3-D scenario right away, time and money could be saved and effective treatments made available sooner.

petrie_dishesAnd now, thanks to a team led by Dr. Wei Sun of Philadelphia’s Drexel University, this may be possible. Using the techniques of 3-D printing and biofabrication, the research team was able to manufacture tumors by squirting out a mixture of cancerous and healthy biomaterial, dollop by dollop, and create a three-dimensional replica of a living tumor. Because of this, the field of cancer research could be revolutionized.

According to Sun, there’s just as huge a disconnect between what works in two versus three dimensions as there is between what works in animals versus humans. These disconnects are what make developing new cancer drugs so time consuming and expensive. You can’t just rely on a formula when switching to each new environment, testing takes time, results must be documented along the way, and adjustments made at every step.

3dprinted_tumorsWith Sun’s 3-D printing technology, a living tumor can be printed just as easily as cancer cells grow in a Petri dish. The machinery used is capable of printing with extraordinarily high resolution, which allows cells to be placed with incredible precision. The average cell is 20 microns, where as Sun’s system can place individual cells within two to three microns. That means Sun can print out extraordinarily specific, spheroid-shaped tumors in a multitude of different shapes and sizes.

But testing cancer drugs more easily is only one of the many uses of Sun’s technology. Since each tumor is different, there’s the possibility that the technology could be used to simulate individual patients’ cancers in the lab and see which drugs work most effectively on them. What’s more, Dr. Sun indicates that cancer testing is really just the beginning:

Doctors want to be able to print tissue, to make organ on the cheap. This kind of technology is what will make that happen. In 10 years, every lab and hospital will have a 3-D printing machine that can print living cells.

diabetes_worldwideOn another front, 3-D printing technology is offering new possibilities in the treatment of diabetes. Often referred to as a “rich man’s disease”, this condition is actually very prevalent in the developing world where nutrition is often poor and exercise habits are not always up to snuff. To make matters worse, in these parts of the world, the disease is not considered a serious health problem and proper means and facilities are not always available.

Enter the Reach, a cheap new diabetes test developed by a group of students from the Schulich School of Business at York University in Toronto. Relying on 3-D printing technology, the device is aimed at urban “slum-dwellers” who may be threatened with diabetes, but very likely haven’t been checked for it. It’s one of six finalists for this year’s Hult Prize, which challenges students to create social good enterprises.

?????????????????This year’s goal, which was set by Bill Clinton, is to reduce rates of non-communicable diseases among the urban poor. As part of their Social Enterprise Challenge, the 2014 Hult Prize is intended to address the challenge of building “a social health care enterprise that serves the needs of 25 million slum dwellers suffering from chronic diseases by 2019.” And as Dhaman Rakhra, one of the students on the York research team, put it:

We saw that diabetes is growing at the fastest rate among the slum population. It is also a disease that can be addressed, and where you can have an immediate impact. A lot of it is about a lifestyle change, if it’s detected early.

Roughly the size of a postage stamp, the Reach is similar to a home pregnancy test, in that it tests a patient’s urine. If someone’s urine has a certain level of glucose in it – indicating propensity for diabetes – the test changes color. Most importantly of all, the test can be printing out on a normal 3-D printer, making it unbelievably cheap (just two cents a pop!) The students plan to distribute the Square using the Avon business model, where local people will sell on the enterprise’s behalf.

slumsThe Schulich students, who are all undergraduates, plan to refine the idea over the summer, first spending time with a Hult accelerator in Cambridge, Massachusetts, then during a month-long pilot test at a large slum in Mumbai. If they should win the Hult Prize, they will be awarded one million dollars to further develop, refine and finance it. But as Rakhra claimed, the real fun comes in the form of bright minds coming together to come up with solutions to modern issues:

It’s exciting to really show that young people really can make a difference by creating a social enterprise that’s self-sustaining. It’s not something that many young business students really think about as a career path. But it’s definitely something we hope to influence.

The on-site manufacturing of cheap, effective drugs, prosthetics, and medical devices are undoubtedly one of the most exciting aspect of the revolution taking place with additive manufacturing. For starters, it is creating more cost effective ways to address health problems, which is a saving grace for patients and medical systems that are strapped for cash.. At the same time, it shows the potential that new technologies have to address social and economic inequality, rather than perpetuating it.

Sources: fastcodesign.com, fastcoexist.com, hultprize.org

The Future of Medicine: Elastic Superglue and DNA Clamps

nanomachineryIf there’s one thing medical science is looking to achieve, it’s ways of dealing with sickness and injuries that are less invasive. And now more than ever, researchers are looking to the natural world for solutions. Whether it is working with the bodies own components to promote healing, or using technologies that imitate living organism, the future of medicine is all about engineered-natural solutions.

Consider the elastic glue developed by associate professor Jeffrey Karp, a Canadian-born medical researcher working at Harvard University. Created for heart surgery, this medical adhesive is designed to replace sutures and staples as the principle means of sealing incisions and defects in heart tissue. But the real kicker? The glue was inspired by sticky natural secretions of slugs.

hlaa-4Officially known as hydrophobic light-activated adhesive (HLAA), the glue was developed in a collaboration between Boston Children’s Hospital, MIT, and Harvard-affiliated Brigham and Women’s Hospital. And in addition to being biocompatible and biodegradable (a major plus in surgery), it’s both water-resistant and elastic, allowing it to stretch as a beating heart expands and contracts.

All of this adds up to a medical invention that is far more user-friendly than stitches and staples, does not have to be removed, and will not cause complications. On top of all that, it won’t complicate healing by restricting the heart’s movements, and only becomes active when an ultraviolet light shines on it, so surgeons can more accurately bind the adhesive exactly where needed.

hlaa-3The technology could potentially be applied not just to congenital heart defects, but to a wide variety of organs and other body parts. In an recent interview with CBC Radio’s Quirks & Quarks, Karp explained the advantages of the glue:

Sutures and staples really are not mechanically similar to the tissues in the body, so they can induce stress on the tissue over time. This is a material that’s made from glycerol and sebacic acid, both of which exist in the body and can be readily metabolized. What happens over time is that this material will degrade. Cells will invade into it and on top of it, and ideally the hole will remain closed and the patient won’t require further operations.

In lab tests, biodegradable patches coated with HLAA were applied to holes in the hearts of live pigs. Despite the high pressure of the blood flowing through the organs, the patches maintained a leakproof seal for the 24-hour test period. HLAA is now being commercially developed by Paris-based start-up Gecko Biomedical, which hopes to have it on the market within two to three years.

dnaclampIn another recent development, scientists at the Université de Montréal have created a new DNA clamp capable of detecting the genetic mutations responsible for causing cancers, hemophilia, sickle cell anemia and other diseases. This clamp is not only able to detect mutations more efficiently than existing techniques, it could lead to more advanced screening tests and more efficient DNA-based nanomachines for targeted drug delivery.

To catch diseases at their earliest stages, researchers have begun looking into creating quick screening tests for specific genetic mutations that pose the greatest risk of developing into life-threatening illnesses. When the nucleotide sequence that makes up a DNA strand is altered, it is understood to be a mutation, which specific types of cancers can be caused by.

DNA-MicroarrayTo detect this type of mutation and others, researchers typically use molecular beacons or probes, which are DNA sequences that become fluorescent on detecting mutations in DNA strands. The team of international researchers that developed the DNA clamp state that their diagnostic nano machine allows them to more accurately differentiate between mutant and non-mutant DNA.

According to the research team, the DNA clamp is designed to recognize complementary DNA target sequences, binds with them, and form a stable triple helix structure, while fluorescing at the same time. Being able to identify single point mutations more easily this way is expected to help doctors identify different types of cancer risks and inform patients about the specific cancers they are likely to develop.

dna_cancerDiagnosing cancer at a genetic level could potentially help arrest the disease, before it even develops properly. Alexis Vallée-Bélisle, a Chemistry Professor at the Université de Montréal, explained the long-term benefits of this breakthrough in a recent interview:

Cancer is a very complex disease that is caused by many factors. However, most of these factors are written in DNA. We only envisage identifying the cancers or potential of cancer. As our understanding of the effect of mutations in various cancer will progress, early diagnosis of many forms of cancer will become more and more possible.

Currently the team has only tested the probe on artificial DNA, and plans are in the works to undertake testing on human samples. But the team also believes that the DNA clamp will have nanotechnological applications, specifically in the development of machines that can do targeted drug-delivery.

dna_nanomachineFor instance, in the future, DNA-based nanomachines could be assembled using many different small DNA sequences to create a 3D structure (like a box). When it encounters a disease marker, the box could then open up and deliver the anti-cancer drug, enabling smart drug delivery. What’s more, this new DNA clamp could prove intrinsic in that assembly process.

Professor Francesco Ricci of the University of Rome, who collaborated on the project, explained the potential in a recent interview:

The clamp switches that we have designed and optimized can recognize a DNA sequence with high precision and high affinity. This means that our clamp switches can be used, for example, as super-glue to assemble these nano machines and create a better and more precise 3D structure that can, for example, open in the presence of a disease marker and release a drug.

Hmm, glues inspired by mollusc secretions, machines made from DNA. Medical technology is looking less like technology and more like biology every day now!

Sources: cbc.ca, gizmag.com, (2)

Year-End Health News: From Cancer Prevention to Anti-Aging

medical technology The year of 2013 ended with a bang for the field of health technology. And in my haste to cover as many stories as I could before the year ended, there were some rather interesting news developments which I unfortunately overlooked. But with the New Year just beginning, there is still plenty of time to look back and acknowledge these developments, which will no doubt lead to more in 2014.

The first comes from the UK, where the ongoing fight against cancer has entered a new phase. For years, researchers have been developing various breathalyzer devices to help detect cancer in its early phases. And now, a team from the University of Huddersfield plans to introduce one such cancer-detecting breathalyser (known as the RTube) into pharmacies.

lung-cancer-xrayAccording to Dr Rachel Airley, the lead researcher of the Huddersfield team, these molecules – which consist of genes, proteins, fragments of cells, secretions and chemicals produced by the metabolism of living tissue with the disease – form a kind of chemical and biological signature. Using breath testing devices like the RTube, Dr Airley developed a project to define a lung cancer “biomarker signature” that is detectable in breath.

According to Dr Airley:

When you get certain chemicals in someone’s breath, that can be a sign that there is early malignancy. We are looking to be able to distinguish between patients with early lung cancer and patients who have maybe got bronchitis, emphysema or non-malignant smoking related disease… or who have maybe just got a cough.

cancer_breathalyserThe goal of the project is to validate the signature in a large number of patients to ensure it can reliably distinguish between lung cancer and non-cancerous lung disease. Dr. Airley told us that this will require tracking the progress of patients for up to five years to see if the disease develops and can be linked back to a signature picked up in the patient’s breath at the beginning of the project.

So far, the project has secured £105,000 (US$170,000) in funding from the SG Court Pharmacy Group with the University of Huddersfield providing matching funding. The SG also operates the chain of pharmacies in the South East of England where the initial trials of the breathalyzer technology will be carried out.

The researchers predict that people visiting their local pharmacy for medication or advice to help them quite smoking will be invited to take a quick test, with the goal of catching the disease before the patients start to experience symptoms. Once symptoms present themselves, the disease is usually at an advanced stage and it is often too late for effective treatment.

cancer_cellDr Airley stresses that the trial is to test the feasibility of the pharmacy environment for such a test and to ensure the quality of the test samples obtained in this setting are good enough to pick up the signature:

There are 12,000 community pharmacies in Britain and there is a big move for them to get involved in primary diagnostics, because people visit their pharmacies not just when they are ill but when they are well. A pharmacy is a lot less scary than a doctor’s surgery.

Dr Airley also says her team is about to start collecting breath samples from healthy volunteers and patients with known disease as a reference point and hope to start the pharmacy trials within two years. If all goes well, she says it will be at least five years before the test is widely available.

max_plank_testThe next comes from Germany, where researchers have created a test that may help doctors predict one of the most severe side effects of antidepressants: treatment-emergent suicidal ideation (TESI). The condition is estimated to affect between four and 14 percent of patients, who typically present symptoms of TESI in the first weeks of treatment or following dosage adjustments.

So far doctors haven’t been able to find the indicators that could predict which patients are more likely to develop TESI, and finding the right medication and testing for side-effects is often a matter of simple trial and error. But a new test based on research carried out by the Max Planck Institute of Psychiatry in Munich, Germany, could change all that.

genetic_circuitThe researchers carried out genome-wide association studies on 397 patients, aged 18 to 75, who were hospitalized for depression, but were not experiencing suicidal thoughts at the time they began treatment. During the study, a reported 8.1 percent of patients developed TESI, and 59 percent of those developed it within the first two weeks of treatment.

To arrive at a list of reliable predictors, the team genotyped the whole group and then compared patients who developed TESI with those who didn’t. Ultimately, they found a subset of 79 genetic variants associated with the risk group. They then conducted an independent analysis of a larger sample group of in-patients suffering from depression and found that 90 percent of the patients were shown to have these markers.

antidepressantsIn short, this test has found that the most dangerous side-effect of antidepressant use is genetic in nature, and can therefore be predicted ahead of time. In addition, the research shed new light on the age of those affected by TESI. Prior to discovering that all age groups in the study were at risk, the assumption had been that under-25s were more at risk, leading to the FDA to begin issuing warnings by 2005.

According to some experts, this warning has had the effect of reducing the prescription of antidepressants when treating depression. In other words, patients who needed treatment were unable to get it, out of fear that it might make things worse. This situation could now be reversed that doctors can avail themselves of this new assessment tool based on the research.

DNA-MicroarrayThe laboratory-developed test, featuring a DNA microarray (chip), is being launched immediately by US company Sundance Diagnostics, ahead of submission to the FDA for market clearance. As Sundance CEO Kim Bechthold said in a recent interview:

A DNA microarray is a small solid support, usually a membrane or glass slide, on which sequences of DNA are fixed in an orderly arrangement. It is used for rapid surveys of the presence of many genes simultaneously, as the sequences contained on a single microarray can number in the thousands.

Ultimately, according to Bechthold, the aim here is to assist physicians in significantly reducing the risk of suicide in antidepressant use, and also to provide patients and families with valuable personal information to use with their doctors in weighing the risks and benefits of the medications.

Wow! From detecting cancer to preventing suicides, the New Year is looking bright indeed! Stay tuned for good news from the field of future medicine!

Sources: gizmag.com, hud.ac.uk, (2), mpg.de

The Future is Here: “Spiber” Silk

spider-silkFor years, scientists and researchers have been looking for a way to reproduce the strength of spider silk in the form of a synthetic material. As an organic material, spider silk is tougher than kevlar, strong as steel, lighter than carbon fiber, and can be stretched 40 percent beyond its original length without breaking. Any material that can boast the same characteristics and be massed produced would be worth its weight in gold!

Recently, a Japanese startup named Spiber has announced that it has found a way to produce the silk synthetically. Over the next two years, they intend to step up mass production and created everything from surgical materials and auto arts to bulletproof vests. And thanks to recent developments in nanoelectronics, its usages could also include soluble electronic implants, artificial blood levels and ligaments, and even antibacterial sutures.

spiber-synthetic-spider-silkSpider silk’s amazing properties are due to a protein named fibroin. In nature, proteins act as natural catalyst for most chemical reactions inside a cell and help bind cells together into tissues. Naturally, the process for creating a complex sequence of aminoacids that make up fibroin are very hard to reproduce inside a lab. Hence why scientists have been turning to genetic engineering in recent years to make it happen.

In Spiber’s case, this consisted of decoding the gene responsible for the production of fibroin in spiders and then bioengineering bacteria with recombinant DNA to produce the protein, which they then spin into their artificial silk. Using their new process, they claim to be able to engineer a new type of silk in as little as 10 days, and have already created 250 prototypes with characteristics to suit specific applications.

SpiderSilkModelNatureThey begin this process by tweaking the aminoacid sequences and gene arrangements using computer models to create artificial proteins that seek to maximize strength, flexibility and thermal stability in the final product. Then, they synthesize a fibroin-producing gene modified to produce that specific molecule.

Microbe cultures are then modified with the fibroin gene to produce the candidate molecule, which is turned into a fine powder and then spun. These bacteria feed on sugar, salt and other micronutrients and can reproduce in just 20 minutes. In fact, a single gram of the protein produces about 5.6 miles (9 km) of artificial silk.

spiber_qmonosAs part of the patent process, Spiber has named the artificial protein derived from fibroin QMONOS, from the Japanese word for spider. The substance can be turned into fiber, film, gel, sponge, powder, and nanofiber form, giving it the ability to suit a number of different applications – everything from clothing and manufacturing to nanomedicine.

Spibers says it is building a trial manufacturing research plant, aiming to produce 100 kg (220 lb) of QMONOS fiber per month by November. The pilot plant will be ready by 2015, by which time the company aims to produce 10 metric tons (22,000 lb) of silk per year.

spiber_dressAt the recent TedX talk in Tokyo, company founder Kazuhide Sekiyama unveiled Spiber’s new process by showcasing a dress made of their synthetic silk. It’s shiny blue sheen was quite dazzling and looks admittedly futuristic. Still, company spokesperson Shinya Murata admitted that it was made strictly for show and nobody tried it on.

Murata also suggested that their specialized slik could be valuable in moving toward a post-fossil-fuel future:

We use no petroleum in the production process of Qmonos. But, we know that we need to think about the use of petroleum to produce nutrient source for bacteria, electric power, etc…

Overall, Sekyama lauded the material’s strength and flexibility before the TedX audience, and claimed it could revolutionize everything from wind turbines to medical devices. All that’s needed is some more time to further manipulate the amino acid sequence to create an even lighter, stronger product. Given the expanding use for silks and its impeccable applicability, I’d say he’s correct in that belief.

In the meantime, check out the video from the TedX talk:


Sources:
gizmag.com, fastcoexist.com

The Future of Medicine: Smartphone Medicine!

iphone_specIt’s no secret that the exponential growth in smartphone use has been paralleled by a similar growth in what they can do. Everyday, new and interesting apps are developed which give people the ability to access new kinds of information, interface with other devices, and even perform a range of scans on themselves. It is this latter two aspect of development which is especially exciting, as it is opening the door to medical applications.

Yes, in addition to temporary tattoos and tiny medimachines that can be monitored from your smartphone or other mobile computing device, there is also a range of apps that allow you to test your eyesight and even conduct ultrasounds on yourself. But perhaps most impressive is the new Smartphone Spectrometer, an iPhone program which will allow users to diagnose their own illnesses.

iphone_spec2Consisting of an iPhone cradle, phone and app, this spectrometer costs just $200 and has the same level of diagnostic accuracy as a $50,000 machine, according to Brian Cunningham, a professor at the University of Illinois, who developed it with his students. Using the phone’s camera and a series of optical components in the cradle, the machine detects the light spectrum passing through a liquid sample.

This liquid can consist of urine or blood, any of the body’s natural fluids that are exhibit traces of harmful infection when they are picked up by the body. By comparing the sample’s spectrum to spectrums for target molecules, such as toxins or bacteria, it’s possible to work out how much is in the sample. In short, a quickie diagnosis for the cost of a fancy new phone.

Granted there are limitations at this point. For one, the device is nowhere near as efficient as its industrial counterpart. Whereas automated $50,000 version can process up to 100 samples at a time, the iPhone spectrometer can only do one at a time. But by the time Cunningham and his team plan on commercializing the design, they hope to increase that efficiency by a few magnitudes.

iphone_spec1On the plus side, the device is far more portable than any other known spectrometer. Whereas a lab is fixed in place and has to process thousands of samples at any given time, leading to waiting lists, this device can be used just about anywhere. In addition, there’s no loss of accuracy. As Cunningham explained:

We were using the same kits you can use to detect cancer markers, HIV infections, or certain toxins, putting the liquid into our cartridge and measuring it on the phone. We have compared the measurements from full pieces of equipment, and we get the same outcome.

Cunningham is currently filing a patent application and looking for investment. He also has a grant from the National Science Foundation to develop an Android version. And while he doesn’t think smartphone-based devices will replace standard spectrometry machines with long track records, and F.D.A approval, he does believe they could enable more testing.

publiclaboratoryThis is especially in countries where government-regulated testing is harder to come by, or where medical facilities are under-supplied or waiting lists are prohibitively long. With diseases like cancer and HIV, early detection can be the difference between life and death, which is a major advantage, according to Cunningham:

In the future, it’ll be possible for someone to monitor themselves without having to go to a hospital. For example, that might be monitoring their cardiac disease or cancer treatment. They could do a simple test at home every day, and all that information could be monitored by their physician without them having to go in.

But of course, the new iPhone is not alone. Many other variations are coming out, such as the PublicLaboratory Mobile Spectrometer, or Androids own version of the Spectral Workbench. And of course, this all calls to mind the miniature spectrometer that Jack Andraka, the 16-year old who invented a low-cost litmus test for pancreatic cancer and who won the 2012 Intel International Science and Engineering Fair (ISEF). That’s him in the middle of the picture below:

ISEF2012-Top-Three-WinnersIt’s the age of mobile medicine, my friends. Thanks to miniaturization, nanofabrication, wireless technology, mobile devices, and an almost daily rate of improvement in medical technology, we are entering into an age where early detection and cost-saving devices are making medicine more affordable and accessible.

In addition, all this progress is likely to add up to many lives being saved, especially in developing regions or low-income communities. It’s always encouraging when technological advances have the effect of narrowing the gap between the haves and the have nots, rather than widening it.

And of course, there’s a video of the smartphone spectrometer at work, courtesy of Cunningham’s research team and the University of Illinois:


Source:
fast.coexist.com