Developing World Tech: BRCK Mobile Internet Device

BRCK1Far from Silicon Valley in California, there is a place that some are now calling “Silicon Savannah.” Located around Nairobi, and centered on the nonprofit collective Ushahidi, an explosion in African tech is taking shape. And this month, backers of the collective’s 2013 Kickstarter campaign are finally getting their hands on BRCK – a long-awaited device that is the antithesis of shiny, expensive internet hardware.

A mobile Internet router, BRCK is essentially a self-powered, mobile Wi-Fi device that promises to bring internet access to remote communities and underdeveloped neighborhoods all around the world. And as an added bonus, it reverses the usual order of globalization – having been invented in a developing country, built in the US, and intended for customers in any country anywhere.

BRCKIt can connect to the web in one of three ways: by plugging in a standard ethernet cable, by bridging with other Wi-Fi networks, or by accessing 3G or 4G data via a basic SIM card. Originally, Ushahidi invented it in order to overcome infrastructure challenges – specifically, inconsistent electricity and Internet connectivity – plaguing young upstarts in Nairobi. But it turns out, plenty of other people and places face the same challenges all over the world.

Contrary to public opinion, it is not just developing or underdeveloped countries that experience infrastructure challenges. Recently in the UK, Virgin Media customers across London lost service; while in the US, in what appeared to be an unrelated event, millions of Time Warner customers across the U.S. – largely in Chicago, Houston, Los Angeles, New York, and Tampa – were knocked offline.

Developed-and-developing-countriesBut even just focusing on the developing world, BRCK’s potential market is enormous. While only a quarter of people from the developing world are currently connected, they already account for a staggering two-thirds of all people online today. While the technology is not exactly cutting-edge by most standards, it offers numerous advantages that take the needs of its potential market into account.

Beyond its three connection methods, BRCK can keep up to 20 users up and running for as long as eight hours during an electrical outage. And should the internet be unavailable in a given locale, the device continues operating offline, syncing up when its connection is restored. In addition, the stock hard drive is 4 gigabytes big, and it has a storage capacity of up to 32 gigabytes.

http://upload.wikimedia.org/wikipedia/commons/a/a2/Nairobi_Kibera_04.JPGBRCK CEO Erik Hersman, who cut his teeth in the industry as a blogger, sees the company’s base in Nairobi as one of its greatest assets, particularly given its target market. Having been born in Sudan and having settled in Kenya with his young family,  ( is well-suited to addressing local needs with local solutions:

I describe it as a new remix of old technology. That’s the key to understanding Africa’s technology… If it works in Africa, it’ll work anywhere… We’re playing with dirty power and crappy Internet, so the device has to be resilient.

While designed in Kenya, BRCK is manufactured and assembled in Texas by a company called Silicon Hills, which is located outside of Austin. With its matte black, rubberized case, BRCK is elegant, but mostly unassuming, and has the relative dimensions of an actual brick. It’s too large to fit in a pocket, but small enough to carry in a backpack, place on a desk, or even on the hood of your Land Rover in the African countryside.

BRCK2By weight, BRCK is substantially heavier than a plastic router, but it’s also much more than one. In addition to its battery, BRCK has multiple ports, including a general-purpose input/output, enabling users to program and connect other hardware – such as sensors or a solar charger – to the device. But what is perhaps most compelling about BRCK, are its potential applications.

In truth, the greatest possibilities lies in the ability to break away from the model of centralized internet providers. This could lead to nothing short of a revolution in how people get online, and in way that would ensure a far greater measure of “equality of access”. As Hersman explained it:

We see enormous resonance with the work of other organizations. Take the proliferation of web-enabled laptops and tablets in schools; why is it that each of these devices connect to a mobile tower? Why not to a single, centralized point? …We’re at a place in history where the barriers to entry are no longer in the software space, but in the hardware space. Because we don’t yet have fully functioning maker spaces and rapid prototyping abilities here in Nairobi, the design process is still relatively slow and expensive, but the barriers are coming down.

Achuar community monitors learning to use GPSEducation, health, environmental, and even military and governmental organizations are already in conversation with BRCK and multiple entities are testing it out. For consumers in emerging markets, BRCK’s $200 price tag may be a stretch, but the company is looking at purchasing plans, which have worked well in developing nations for both the cell phone and energy sectors.

But BRCK’s business model is ultimately based more on companies than individual consumers. Digital Democracy, a nonprofit organization that has worked in two dozen countries around the world, is one such company. According to its founder and executive director, Emily Jacobi:

The reason that we backed BRCK and that I’m excited to see it come about is because it fills an important gap in hardware and tools. We’re going to remote areas and training groups – indigenous groups, refugees, and other at-risk populations – to map the land and communities using GPS devices and cameras. We’re particularly excited about BRCK’s ability to facilitate collaborative work, as well as function offline.

internetIf there was one thing that the Digital Revolution promised, it was to bring the world together. Naturally, there were those who thought this to be naive and idealistic, citing the fact that technology has a way of being unevenly distributed. And while today, people live in a world that is far more connected than in any previous age, access remains an illustrative example of the gap between rich and poor nations.

Hence why an invention like the BRCK holds so much promise. Not only does it neatly reverse the all-too-common direction of technological development – i.e. technology conceived by a wealthy country, built in a poor one, only sold in wealthy ones – it also helps to shorten the gap between rich and poor nations when it comes to accessing and enjoying the fruits of that development.

This month, orders began shipping to buyers in 45 countries around the world this month. To get your hands on one, check out Ushahidi’s website and learn more about their efforts to develop open-source, equal-access technology.

Sources: fastcoexist.com, digital-democracy.org, ushahidi.com

The Future of Housing: Casa Futebol Concept

casa_futebol_brazilIt’s no secret that Brazil’s decision to host the 2014 World Cup was the source of controversy. With roughly $4 billion spent on renovating and constructing the stadiums needed to host the international event, many wondered why that money could not have been spent addressing other infrastructure concerns – such as providing housing and utilities for its many impoverished citizens.

However, drawing inspiration from the social issues plaguing much of the publicity around the event, a pair of French architects have developed a proposal to re-invent the structures as complexes for low-cost housing. While most of the stadiums constructed for the World Cup will continue to host football matches, Brazil’s local teams stand to draw a fraction of the crowds that attended the event, doing little to assuage concerns of wasted resources.

casa_futebol_brazil-1Other buildings, such as the Arena da Amazonia, face a less certain future. Located in the jungle city of Manaus, the 44,500 seat stadium is perhaps the most contentious of Brazil’s World Cup creations. A local judge proposed converting it into a center for temporary detainees to tackle the city’s overflowing prisons, though this was met with fervent opposition from government officials.

The proposal by Axel de Stampa and Sylvain Macaux is perhaps the most ambitious. Dubbed Casa Futebol, it involves transforming each of the 12 World Cup Stadiums into affordable housing for Brazil’s poor and displaced. As Stampa explained in an interview with Gizmag:

The project covers 12 Brazilian stadiums. There are actually six stadiums where we can colonize the exterior facade. Five of these have an exterior structure composed of concrete and metal columns separated by seven or eight meters (23 to 26 ft). We just have to insert pre-fabricated housing using the existing structures.

casa_futebol_brazil-2The remaining stadiums would see housing modules that are 105 m2 (1,130 ft2) fitted to the interior at the expense of rows of seating, the only difference between these and those receiving exterior additions being the installation process. Conscious of Brazil’s adoration for the world game, the proposal would see the stadiums altered slightly, but continue to host matches with profits going towards ongoing maintenance and construction of the housing.

The project is based on modular pre-fabricated houses. So the only thing that changes is the implantation of the houses… We think that the concept is achievable in all 12 stadiums. You just have to take up some seating and reduce their capacity a little bit.

The team guesses that if converted, the stadiums could each house between 1,500 and 2,000 people per building, and a total of approximately 20,000 across the entire project. This bold proposal for Brazil’s stadiums forms part of a year-long architecture project called 1 week 1 project, where the pair endeavor to produce spontaneous architecture projects every week for one year.

casa_futebol_brazil-4While they don’t have current plans to take the Casa Futebol beyond the concept stage, it is hoped that the project can inspire more socially-conscious approaches to problems of this kind. Combined with 3-D printed housing and other prefab housing projects, this kind of re-purposing of existing infrastructure is a way of addressing the problem of slums, something which goes far beyond the developing world.

Source: gizmag.com