The Future is Here: 3-D Printed Brain Scanner

openbciWhen it comes to cutting-edge technology in recent years, two areas of development have been taking the world by storm. On the one hand, there’s 3-D printing (aka. Additive Manufacturing) that is revolutionizing the way we fabricate things. On the other, there’s brain-computer interfaces (BCI), which are giving people the power to control machines with their minds and even transfer their thoughts.

And now, two inventors – Conor Russomanno and Joel Murphy – are looking to marry the two worlds in order to create the first, open-source brain scanner that people can print off at home. Thanks to funding from DARPA, the two men printed off their first prototype headset this past week. It’s known as the OpenBCI, and it’s likely to make brain scanning a hell of a lot more affordable in the near future.

openbci1It includes a mini-computer that plugs into sensors on a black, skull-grabbing piece of plastic called the “Spider Claw 3000,” which can be created with a 3-D printer. Assembled, it operates as a low-cost electroencephalography (EEG) brainwave scanner that connects to a PC, compared to  high-grade EEG machines used by laboratories and researchers that cost thousands of dollars.

But over the past few years, cheaper models have been made by companies like Emotiv, which have in turn allowed a new era of DIY brain hackers to conduct brainwaves experiments. Since that time, everything from games, computer interfaces, personal tracking tools, and self-directed mind enhancement have been available to regular people.

openbci2But Russomanno and Murphy felt the community needed a completely open-source platform if it was truly going to take off – hence the OpenBCI. The hardware to build the headset can be ordered from the company, while the software to run it is available through GitHub, a popular code sharing site. Once procured, people will have the ability to print off, program, and adjust their own personal brain scanning device.

According to Russomanno, the greatest asset of the headset (aside from the price) is the freedom it gives to brain hackers to put their EEG probes anywhere they like:

You don’t want to limit yourself to looking to just a few places on the scalp. You can target up to 64 locations on the scalp with a maximum of 16 electrodes at a time.

As it stands, Russomanno and Murphy have built the prototype headset, but still need to raise money to build the mini-computer that it plugs into. To accomplish this, the two inventors launched a Kickstarter project to fund the development of the Arduino-compatible hardware. Last week, they reached their goal of $100,000, and expect to ship their first systems in March.

openbci3The current design of the hardware, which looks more like a hexagonly-shaped circuit board than a computer, is their third incarnation. In addition to being smaller and Adruino-compatible, the third version is also programmable via Bluetooth and has a port for an SD card. When the hardware starts shipping, Russomanno expects it to kick off a new round of experimentation:

We’ve got about 300 people that have already donated to receive the board. If you’re willing to spend $300 for a piece of technology, you’re definitely going to build something with it.

One of the hallmarks of technological revolutions is the ability to make the technology scalable and more affordable. In this way, its benefits (aka. returns) are able to multiply and expand. And with the help of open-source devices like these that people can create on 3-D printers (which are also dropping in prices) the returns on mind-controlled devices are likely to grow exponentially in the coming years.

In short, the age of mind-controlled machinery may be just around the corner. Good to know they will be obeying us and not the other way around!


Sources:
wired.com, kickstarter.com

The Future is Here: Self-Healing Metal

self-healing_metalYou’ve heard of self-healing concrete, you’ve heard of self-healing polymers. And now, it seems that researchers at MIT have found a way to make metals heal themselves after tiny cracks form. As the latest in a series of materials that is capable of maintaining itself, this discovery could very well help pioneer the revolution in manufacturing everyone has been waiting for.

Led by graduate student Guoqiang Xu and professor Michael Demkowicz, the process of getting metals to heal themselves was made almost entirely by accident. The discovery first came when they were modelling a sheet of nickle and tiny microscopic cracks were applied. Once tension was applied, the cracks became smaller and then disappeared as the edges fused together.

crystallineApparently, the key has to do with the fact that most metals are composed of microscopic crystalline grains, the size and orientation of which affect the overall strength and characteristics of the material. Nickel has always been of interest because of its use in so many superalloys, many of which are used in harsh environments – jet turbines, deep sea oil rigs, heavy industry joints.

It turns out that the grains making these materials so strong are not as static as scientists thought. As the metal is pulled outward, the edge of the crystalline grains begins to migrate and can eventually fill in the crack completely. The migration of this crystalline boundary is what heals the gaps in the material. And while it is not exactly polymorphic alloy (see pic below), its certainly big news.

metal_fatigueAnd while researchers have only been able to reproduce this healing behavior with cracks at the microstructural level (known as disclination), these micro-defects are the source of much larger and sometimes catastrophic cracks and metal fatigue. The geometry of disclinations can actually reverse an applied force locally, which is how the tension leads to the metal pulling itself back together.

The team believes this newfound knowledge can be used to prevent superalloys from accumulating structural cracks that could lead to real damage with time. Materials could also be designed to direct damage into disclination-type structures, areas that could absorb damage and then heal themselves. Given time, it could even lead to metals that don’t weaken with age.

t1000Still, you shouldn’t be expecting something like this guy anytime soon! And be sure to enjoy this brief but poignant video of the self-healing effect in action:


Source:
extremetech.com