Bad New from Mars: First Colonists Doomed!

Mars_exploreWith the exploration of Mars continuing apace and a manned missions looming, there has been an explosion of interest in the idea of one day settling the planet. As the non-profit organization known as Mars One can attest, many people are  interested in becoming part of a mission to colonize the Red Planet. In fact, when they first went public, some 200,000 people signed on to become part of the experience.

The fact that the trip would be one-way and that the  plans for getting them there did not yet exist was not an deterrent. But if a recent study from MIT is to be believed, those who choose to go will and have the experience televised will be in for a rather harsh experience. According to a feasibility study produced by researchers at the Institute, the plan has potentially deadly and astronomically expensive flaws.

mars_revelationspaceAfter analyzing the Mars One mission plan, the MIT research group found that the first astronaut would suffocate after 68 days. The other astronauts would die from a combination of starvation, dehydration, or incineration in an oxygen-rich atmosphere. The analysis also concludes that 15 Falcon Heavy launches – costing around $4.5 billion – would be needed to support the first four Mars One crew.

The technology underpinning the mission is rather nebulous; and indeed, that’s where the aerospace researchers at MIT find a number of potentially catastrophic faults. While the technology to set up a colony on Mars does technically exist, most of it is at a very low technology readiness level (TRL) and untested in a Mars-like environment. And the prediction that things will be worked out with time and crowdfunding does not appear to be sufficient.

Mars_one2Mars One will rely heavily on life support and in-situ resource utilization (ISRU) – squeezing water from Martian soil and oxygen from the atmosphere. But these technologies are still a long way off large-scale, industrial use by a nascent human colony on Mars. NASA’s next Mars rover will have an ISRU unit that will make oxygen from the Red Planet’s atmosphere of CO2 – but that rover isn’t scheduled to launch until 2020, just two years before the planned launch of Mars One.

Originally, Mars One’s sign-up list included some 200,000 candidates. That number has now been whittled down to 705 – a fairly even mix of men and women from all over the world, but mostly the US. Several teams of four astronauts (two men, two women) will now be assembled, and training will begin. The current plan is to send a SpaceX Falcon Heavy rocket carrying the first team of four to Mars in 2022 – just eight years from now. 

spaceX-falcon9The whole thing will be televised as a reality TV show, an instrinsic part of the plan since much of the funding is expected to come from media sponsors and advertisers. In the interim, a number of precursor missions – supplies, life-support units, living units, and supply units – will be sent to Mars ahead of the human colonizers. More colonists will be sent fairly rapidly thereafter, with 20 settlers expected by 2033.

The new feasibility study was led by Sydney Do, a PhD candidate at the Massachusetts Institute of Technology who has done similar studies on other space missions. Do and his team ran a computer simulation based on publicly available information about the Mars One plan and the kinds of technologies it would rely on. The researchers entered data about the crew’s age, weight and activities to find out how much food, oxygen and water they would need.

Mars_GreenhouseThey took into account information from Mars One, such as its plan that “food from Earth will only serve as emergency rations” and the astronauts will mainly eat fresh food they grow themselves. The simulation monitored conditions in the Mars One habitat over 26 months – the amount of time between spaceships from Earth that would resupply them – or until the death of a crew member, whichever came first.

The results of their study were presented in a paper at the International Astronomic Union conference in Toronto last month. They suggest that serious changes would need to be made to the plan, which would either call for the astronauts to grow all their plants in a unit isolated from the astronauts’ living space to prevent pressure buildup in the habitats, or import all food from Earth instead of growing it on Mars.

mars_one2The researchers recommend the latter, as importing all the necessary food along with the first wave of colonists (not including the costs of development, operations, communications, and power systems) would cost $4.5 billion and require 15 Falcon 9 Heavy Rockets to transport it. Comparatively, flying all the equipment needed for the astronauts to grow their own food indefinitely which cost roughly $6.3 billion.

On top of all that, Do and his research staff have concluded that the project will not be sustainable financially. While Mars One says each subsequent manned mission will cost $4 billion, Do’s study found that each mission would cost more than the one before, due to the increasing number of spare parts and other supplies needed to support an increasing number of people.

mars_roverNaturally, Mars One replied that they are not deterred by the study. CEO and co-founder Bas Landorp – who helped develop the mission design – said the plan was based on the company’s own studies and feedback from engineers at aerospace companies that make space systems, such as Paragon Space Development and Lockheed Martin. He added that he and his people are “very confident that our budgets, timelines and requirements are feasible”.

In any case, the study does not claim that the plan is bogus, just that it may be overreaching slightly. It’s not unreasonable to think that Mars One could get people to Mars, but the prospects for gradually building a self-sustaining colony is a bit farfetched right now. Clearly, more time is needed to further develop the requisite technologies and study the Martian environment before we start sending people to live there.

Mars_simulationOh well, people can dream can’t they? But the research and development are taking place. And at this point, it’s a foregone conclusion that a manned mission to Mars will be happening, along with additional robot missions. These will help lay the groundwork for eventual settlement. It’s only a question of when that could happen…


News from Mars: Curiosity Arrives at Mount Sharp

curiosity-mars-self-portrait-crop-640x353After two years exploring the Martian surface, the Curiosity Rover has finally reached its primary science destination – the foot of Mount Sharp, officially known as Aeolis Mons. Now that it’s there, it will begin its ascent of the rock formation, drill into rocks and analyze the different strata in the hopes of learning more about the history of the Red Planet. This is an event a long time in the making, and may prove to yield some of the greatest scientific discoveries ever made.

Located in the heart of the Gale Crater, Mount Sharp is like a layer cake, holding a chronology of past events reaching back billions of years. Because of this, it is an ideal place to find evidence that the Martian surface and atmosphere were once capable of supporting life. It took two years and one month for Curiosity reach the foot of this mountain, which lies some 5500 meters (18,000 feet) above the floor of Gale Crater.

MarsCuriosityTrek_20140911_AThe mountain is the central peak in a crater that measures 154 km/96 miles in diameter and which was formed when a meteor impacted the surface between 3.5 and 3.8 billion years ago. Beyond a certain size, and depending on the gravity of the planet, craters like this all have a central peak. But Mount Sharp represents something much more, otherwise NASA and the Jet Propulsion Laboratory wouldn’t be bothering with it.

Basically, Mars scientists believe that after its creation, the Gale crater was completely filled with sedimentary material from a series of huge floods, or by dust and ice deposits like those that happened at the Martian polar caps. The deposition over 2 billion years left a series sedimentary layers that filled the crater. Following the deposition of the layers, there was a long period of erosion which has finally led to the condition of the crater today.

mountsharp_galecraterThe erosion by some combination of aeolean (wind) forces and water (additional flooding), scooped out the huge crater, re-exposing most of the original depth. However, covering the original central peak are many sedimentary layers of debris. Gale crater’s original central peak actually remains completely hidden and covered by sedimentation. And it is this that attracted scientists with the Curiosity rover to the base of Mount Sharp.

Within the sedimentary layers is a sequential record of the environmental conditions on Mars going back over 2 billion years. While at the base, Curiosity will be able to examine the oldest sedimentary layers; but as it climbs the flanks of the mountain, it will be able to step forward in time. Each layer and its age will reveal information such as how much water was present, whether the water was alkaline or acidic, if there is any organic compounds.

john_klein_curiosity-2The discovery of organic compounds on Mount Sharp could be “Earth shaking”, since the discovery of organics is of very high importance to this mission. Already, over the two year trek, Curiosity has seen numerous signs of the flow of water and sedimentation. Interestingly enough, evidence began to turn up way back in Yellowknife Bay — one of its first destinations, which it visited almost two years ago. But as of yet, signs of organic compounds have remained illusive.

What’s more, Curiosity sadly lacks the necessary equipment to look for evidence of microbial fossils or other signatures of life. Fortunately, the next rover – the Mars 2020 rover – will be equipped with the necessary tools to work out whether Mars ever harbored life. In any case, because of the lack of organic compounds in Yellowknife, NASA decided to continue to Mount Sharp, which is currently the best place to dig up scientific data about Mars’ past.

MSL_TraverseMap_Sol0743-2048Curiosity is currently at the base of Mount Sharp, in a region called the Pahrump Hills, where it will continue on to the Murray Formation. Once there, it will take a drill sample of some rock and then continue up Mount Sharp towards the Hematite Ridge where two drill sites await. This farthest site is about 8 km (5 mi) away from its present position, and Curiosity has driven only 9 km since it landed in 2012. So there’s plenty of trekking and work ahead!

One of the greatest challenges is finding a path that will reduce the stress on Curiosity’s wheels, which have been put through some serious wear and tear in the past two years. Because of this, the rover is being driven in reverse for the time being, and the team is looking the path with the least amount of sharp rocks. However, the Mars Curiosity remains confident that the mobility system will be capable of surviving the ten year life span of the rover’s power supply.

And be sure to check out this “Curiosity Rover Report” that talks about this historic accomplishment, courtesy of NASA’s Jet Propulsion Laboratory:


News from Mars: ExoLance Project to Hunt for Life

exolance-2The search for life on Mars has been ongoing, and predates the deployment of the Curiosity rover by many years. However, it is becoming increasingly clear that if signs of life are to be truly found, they won’t turn up by scratching around on the surface. Beyond Curiosity’s own slated inspection of Mount Sharp (where it just arrived!) NASA has some long-range plans that reach deeper.

Outside of NASA’s InSight Lander, which is set to launch in the spring of 2016, there’s Explore Mars’ plan to look for signs of life beneath the surface. A private organization made up technologists and former NASA engineers, their plan is to drop supersonic lances onto the planet that will penetrate deep into the Martian soil to seek out protected, potentially wet strata where life might still exist.

exolanceKnown as ExoLance, the project is designed to take up where the Viking missions of the late 1970s left off. In these first successful Mars landers, there was an experiment on board that looked for signs of life in the Martian soil. This consisted of the Viking lander scooping up soil, depositing it inside the automatic laboratory in the lander, squirted a nutrient solution into the sample, and analyzing the gases given off that might indicate the presence of life.

The Viking experiment did give off gases that seemed like they were due to living organisms, but it later discovered that these were due to chemical reactions due to the extremely dry conditions and constant bombardment of UV radiation. Because of this, NASA has preferred to focus more on geology to gain a better understanding of the Martian environment rather than looking for life directly.

exolance-3But Explore Mars wants to go back to the direct approach by combining an experiment similar to the Viking lab with a delivery system based on the US Air Force’s bunker-buster weapons. They also hope to incorporate technology developed for the Curiosity rover, which includes reusing the aeroshell that protected the Curiosity rover as it made its descent to the Martian surface in 2012.

When the shell reaches Mars, it will open up to reveal a delivery vehicle similar to the Skycrane that delivered Curiosity to the surface by hovering under rocket power while it winched the lander down. In the case of the ExoLance, the vehicle – which is appropriately called a Quiver – will hover in place. But instead of lowering a rover, it will fire multiple penetrator probes at the ground.

exolance-1These perpetrators, called Arrows, are small, lightweight versions of the bunker-buster bombs that were developed by the US forces during the 1991 Gulf War. However, instead of exploding, the Arrows will strike the surface at supersonic speeds to bore deep into the ground and (similar to NASA’s Deep Space 2 probe) split in two to deploy a cache of scientific equipment packed into the nose.

While the tail section remains on the surface to act as a transmitter back to Earth, the nose bores about 5 m (16 ft) into the surface to find protected layers that may contain water, but which are shielded against the deadly surface radiation. Once in position, the Arrow activates its experiment, which is designed to not only detect signs of living organisms, but also to determine if the life signs are those of microbes similar to those found on Earth, or have a completely different origin.

exolance-4The mission is the subject of an Indiegogo crowdfunding campaign aimed at raising US$250,000. The group says that within a year of raising its Indiegogo funding, it would develop and build Arrow prototypes and test them in the Mojave Desert by dropping them from aircraft. The idea is not only to see if the experiments can survive the impact, but also to make sure that the penetrators don’t dig in too deep or too shallow.

In addition, the group expects the design to change as they deals with problems, such as the volume of the cylinder, batteries, deploying the tether linking the two segments, and making sure the components can withstand the impact. In the second year, the group plans to enact Phase II, which would concentrate on developing the microbial experiments. If this is successful, they plan to approach NASA or commercial companies to arrange delivering ExoLance to Mars.

The crowdfunding campaign will run until September 29th, and has raised a total of $15,680 of their projected goal. To check out this campaign, or to contribute, click here. And be sure to check out Explore Mars’ promotional video below:


Settling Mars: The Mars Base Challenge 2014

mars-colonyLife on Mars can’t become a reality without some serious design concepts and engineering. And that’s why Thingiverse, in cooperation with NASA’s Jet Propulsion Laboratory, conduct the Makerbot Mars Base Challenge every year. Taking Mars’ extreme conditions into consideration, people are tasked with designing a utilitarian Mars base that can withstand the elements and make settlers feel at home.

The competition opened on May 30th and received some 227 submissions. The challenge brief asked entrants to take into account the extreme weather, radiation levels, lack of oxygen and dust storms when designing their Martian shelters. And the winning entries will each be awarded a MakerBot Replicator 2 Desktop 3D Printer in order to help them fully explore their designs for Martian abodes.

And although the applicants did not always nail the science, their designs have a novelty that has not been seen in some time. This can especially be seen in with this years finalists, which included a design for a Martian pyramid, a modular beehive and a three-tiered Acropolis.

MarsChallengeResultsThe Thingiverse community appears to have been hugely supportive, printing out the designs themselves and offering handy hints in the comment section beneath each entry. Some were dismissed for being impractical; for example, those that would be immediately flattened or kill all of its inhabitants if it were installed on the Martian surface. But one designer, Noah Hornberger, points out:

A toy car does not need fuel because it runs on the imagination of the child who drives it around. So it seems to me that I’m driving my toy car at full speed and you are here telling me what kind of fuel and oil it needs to run. I would rather leave the physics to the right people.

Luckily, that’s what NASA is on hand for – to ensure that it’s not just the mathematicians and engineers that have an interest or a say in our Martian future, but to make sure those designs and dreams that come from the public meet the basic scientific and engineering requirements. Bringing together inspired ideas and realistic needs, here’s how this year’s finalists measured up.

MarsPryamid-4_Feature_preview_featured This Mars structure is designed with resource consumption and allocation in mind, and also takes into account that the majority of activity would be taking place inside the structure rather than outside. As its creator, Valcrow. explained:

High traffic rooms all have ample natural Martian light to help with the crews extended isolation and confinement… This design focuses on looping essential systems into as many multi-functional roles as possible to ensure that the very limited resources are used and reused as much as possible.

This includes food created through a sustainable aquaponics system which would sit at the top of the pyramid, where it can get some light. A mirror-based series of solar panels will be responsible for collecting energy, with a nuclear generator for backup, and water would be stored near the main power center so that it heats up. The whole thing is inspired by the Pyramid of Giza, but unlike that beauty it can be reconfigured for science or engineering tasks and experiments.

Mars_beehiveThis second design, known as the Queen B because of its modular beehive configuration, comes with all the mod cons and home comforts you might expect on Earth – a kitchen, two bathrooms, a garden, and a 3D print lab and decompression room. Its creator, Noah Hornberger, chose a flat-panelled, low-level design that would be cheap and easy to build and allow for less heat energy to be lost. The hexagon shape was chosen for its durability and ability to form modular designs.

Depleted uranium would be used to create laminated panels that would shield out the elements, but would need to be sandwiched between other materials to make it safe for the occupants. An exothermic chemical reactor would meanwhile be used to heat an underground water container, which will provide heat for the basecamp. Excess steam could also power generators to supplement solar power.

Speaking on behalf of his creation, Hornberger said:

I have extrapolated on the idea of a fully functional apartment on Mars with all the modern amenities fitted inside 16-foot-diameter hexagons. I think that to present Mars life to people and actually make it appealing to the public it needs to feel like home and reflect the lifestyle trends of Earth living.

Mars_acropolisAnd last, but not least, there’s the Mars Acropolis – a design that blends materials used here on Earth to create a classic futurist design that looks like it would be at home in the classic Fritz Lang film. Concrete, steel and Martian soil help form the outer wall that protects the population, while carbon fibre, stainless steel, aluminium and titanium would be used to build the main body.

Three greenhouses contain the vegetation and help filter the air and produce oxygen, and there are decompression chambers at the entrance. On level two, residents can park their shuttles before entering the living quarters and labs, while level three acts as the nerve center – with flight operators and observation posts. It’s joined by a huge water reservoir that flows to the first level for purification.

Designer Chris Starr describes the layout as follows:

The structure serves as a mass research facility, to explore and develop means for additional colonization of the planet. Due to the water vapour contained in the Martian atmosphere, that vapour can be harnessed into usable liquid water, where the condensation is collected from the water vapour, which is filtered back into the reservoir.

mars_one2In all cases, the designs draw attention to the fact that any structures intended for life on Mars will have to achieve a balance between resource management, comfort and entertainment, and security against the elements. At this point, there’s no telling exactly what a Martian settlement will look like; but as always, the truth will likely be stranger than fiction. To see more designs that made it to the Mars Base Challenge this year, check out Thingiverse’s website.


Curiosity Has Landed!

Yesterday, at precisely 10:23 pm Greenwich Mean Time, NASA announced the successful landing of the Mars Curiosity Rover! After blazing through Mars’ atmosphere at over 21,000 km/h, Curiosity’s unique landing system deployed and brought the rover in for a nice, controlled landing.

Needless to say, pandemonium ensued at NASA’s Jet Propulsion Lab, where the landing was being monitored. All those on hand began jumping, hooting, hollering and hugging each other, much as they used to do whenever a successful launch was made or men touched down on the moon. Times may have changed, but the basic goal remains the same: to conquer the unknown and take the next big leap. And when that happens, you can expect the people who work so hard to make that happen to get a little giddy 😉

In addition, the HiRISE team (High Resolution Imaging Science Experiment), caught this beautiful and perfectly-timed photo from the Mars Reconnaissance Orbiter (MRO). The photo shows Curiosity at left deploying its chute and descending to the surface.

Immediately after touching down, Curiosity began sending photos back to NASA of Mars surface. The first two were of its landing zone in Mars’ Gale Crater, shown here:

To mark this momentous occasion, President Obama had this statement to make:

“Tonight, on the planet Mars, the United States of America made history.

The successful landing of Curiosity – the most sophisticated roving laboratory ever to land on another planet – marks an unprecedented feat of technology that will stand as a point of national pride far into the future. It proves that even the longest of odds are no match for our unique blend of ingenuity and determination.

Tonight’s success, delivered by NASA, parallels our major steps forward towards a vision for a new partnership with American companies to send American astronauts into space on American spacecraft. That partnership will save taxpayer dollars while allowing NASA to do what it has always done best – push the very boundaries of human knowledge. And tonight’s success reminds us that our preeminence – not just in space, but here on Earth – depends on continuing to invest wisely in the innovation, technology, and basic research that has always made our economy the envy of the world.

I congratulate and thank all the men and women of NASA who made this remarkable accomplishment a reality – and I eagerly await what Curiosity has yet to discover.”

Yes, this is certainly is history in the making. Needless to say, Curiosity is expected send back some interesting finds as it wanders the Martian surface, takes soil samples, and scans them to determine what secrets and mysteries the surface holds. In time, all this information could become intrinsic to settlement and terraforming, the creation of human civilization on a planet other than Earth! Exciting times we live in!

In the meantime, check out this compilation video of the landing paired with footage take from NASA’s Jet Propulsion Lab:

Via: Universe Today