Judgement Day Update: Cheetah Robot Unleashed!

MIT-Cheetah-05-640x366There have been lots of high-speed bio-inspired robots in recent years, as exemplified by Boston Dynamics WildCat. But MIT’s Cheetah robot, which made its big debut earlier this month, is in a class by itself. In addition to being able to run at impressive speeds, bound, and jump over obstacles, this particular biomimetic robot is also being battery-and-motor driven rather than by a gasoline engine and hydraulics, and can function untethered (i.e. not connected to a power source).

While gasoline-powered robots are still very much bio-inspired, they are dependent on sheer power to try and match the force and speed of their flesh-and-blood counterparts. They’re also pretty noisy, as the demonstration of the WildCat certainly showed (video below). MIT’s Cheetah takes the alternate route of applying less power but doing so more efficiently, more closely mimicking the musculoskeletal system of a living creature.

mit-cheetahThis is not only a reversal on contemporary robotics, but a break from history. Historically, to make a robot run faster, engineers made the legs move faster. The alternative is to keep the same kind of frequency, but to push down harder at the ground with each step. As MIT’s Sangbae Kim explained:

Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground… Many sprinters, like Usain Bolt, don’t cycle their legs really fast. They actually increase their stride length by pushing downward harder and increasing their ground force, so they can fly more while keeping the same frequency.

MIT’s Cheetah uses much the same approach as a sprinter, combining custom-designed high-torque-density electric motors made at MIT with amplifiers that control the motors (also a custom MIT job). These two technologies, combined with a bio-inspired leg, allow the Cheetah to apply exactly the right amount of force to successfully bound across the ground and navigate obstacles without falling over.

MIT-cheetah_jumpWhen it wants to jump over an obstacle, it simply pushes down harder; and as you can see from the video below, the results speak for themselves. For now, the Cheetah can run untethered at around 16 km/h (10 mph) across grass, and hurdle over obstacles up to 33 centimeters high. The Cheetah currently bounds – a fairly simple gait where the front and rear legs move almost in unison – but galloping, where all four legs move asymmetrically, is the ultimate goal.

With a new gait, and a little byte surgery to the control algorithms, MIT hopes that the current Cheetah can hit speeds of up to 48 km/h (30 mph), which would make it the fastest untethered quadruped robot in the world. While this is still a good deal slower than the real thing  – real cheetah’s can run up to 60 km/h (37 mph) – it will certainly constitute another big step for biomimetics and robotics.

Be sure to check out the video of the Cheetah’s test, and see how it differs from the Boston Dynamics/DARPA’s WildCat’s tests from October of last year:



Source:
extremetech.com

The Future is Here: Morphable Skins

https://i1.wp.com/www.m25audi.co.uk/images/audi/technology/aerodynamics.jpgTomorrow’s cars could have a feature that will reduce wind drag and allow them to go faster: smart, morphing skins that form dimples or go smooth on command. It is all part of a growing field of mechanics that seeks to make surfaces “smart”, and it is being considered for everything from increasing aerodynamics to reducing the damage caused by hurricanes and high winds.

The research comes from MIT, where engineers have developed a smart curved surface that can morph at will to reduce drag. Known as a “smorph” (short for smart morphable surface), they were able to get their creation to wrinkle into a dimpled pattern similar to a golf ball’s, with similar aerodynamic properties. In short, when the smorph wrinkles, it is able to travel faster than if it were smooth.

smorphScientists and golfers alike have long known that the dimples on the surface of a golf ball allow it to drastically reduce drag and travel much farther than would otherwise be possible. This happens because the small dents hold the airflow near the surface of ball for a longer time. This reduces the size of the wake, or zone of turbulence, as the ball takes off. However, the mechanics employed here are a bit more complex.

In recent years, in-depth aerodynamic studies have shown that the dimples reduce drag only at lower speeds. As you move toward faster speeds, the advantage of irregularities disappears and a smooth surface becomes the best way to minimize the wake. Now, researchers at MIT have married the best of both worlds by developing a surface that can it’s smoothness on the fly to maximize aerodynamic efficiency at all speeds.

Smorph_0The smorph manages to change its shape by changing the balance between its materials. Basically, an empty core is surrounded by two different polymers. One is thick and squishy, while the outermost layer is stiff skin. As the volume of  a the inner layer is reduced by sucking air out of its hollow core, the core shrinks. The squishy layer is soft enough to contract smoothly, but the skin is forced to wrinkle. The trick is controlling exactly how a smorph wrinkles.

Because the dimples look so much like those on a golf ball’s surface, the researchers were inspired to test their creation in a wind tunnel. Sure enough, when the researchers tested the smorph in a wind tunnel, they found that it was about twice as aerodynamically efficient when dimpled. But the sheath of vortices only form at relatively low speeds, and then convert back to a smooth surface at higher speeds in order to maintain aerodynamic velocity.

smorph_1This is where smorphs could offer a huge advantage. By being able to morph to control drag, they could be especially useful in building structures that won’t collapse or incur significant damage when facing very high winds – one example being the so-called radomes, the spherical, weatherproof domes that enclose radar antennas. The researchers also say that the materials could also be used to minimize drag in cars in order to maximize fuel efficiency.

Earlier this year, Reis won an NSF grant to keep developing smorphs, which he hopes to someday scale up to use on cars, aircraft, and even buildings. There are some issues to overcome before this happens though, such as the fact that hexagonal dimples are unstable on flat surfaces. So far smorphs have only been used on a round, ball shape, but Reis and his co-authors believe they can figure out how to reproduce the pattern on slightly curved surfaces.

Alongside such concepts as morphing wings and self-adjusting and reconfigurable robots, the creation of surfaces that can change shape in order to better accommodate airflow, or be optimal for different tasks, is part of the manufacturing revolution that seeks to replace rigid structures and products with something that can adapt, flow and transform depending on what is being asked of it.

And be sure to check out this video from MIT of the smorph in action:


Sources:
wired.com, gizmag.com

News From Space: Cosmic Inflation and Dark Matter

big bang_blackholeHello again! In another attempt to cover events that built up while I was away, here are some stories that took place back in March and early April of this year, and which may prove to be some of the greatest scientific finds of the year. In fact, they may prove to be some of the greatest scientific finds in recent history, as they may help to answer the most fundamental questions of all – namely, what is the universe made of, and how did it come to exist?

First up, in a development that can only be described as cosmic in nature (pun intended), back in March, astrophysicists at the Harvard-Smithsonian Center announced the first-ever observation of gravitational waves. This discovery, which is the first direct evidence of the Big Bang, is comparable to significance to CERN’s confirmation of the Higgs boson in 2012. And there is already talk about a Nobel Prize for the Harvard crew because of their discovery.

big_bangThis theory, which states that the entire universe sprung into existence from a tiny spot in the universe some 13.8 billion years ago, has remained the scientific consensus for almost a century. But until now, scientists have had little beyond theory and observations to back it up. As the name would suggest, gravitational waves are basically ripples in spacetime that have been propagating outward from the center of the universe ever since the Big Bang took place.

Originally predicted as part of Einstein’s General Theory of Relativity in 1916, these waves are believed to have existed since a trillionth of a trillionth of a trillionth of a second after the Big Bang took place, and have been propagating outward for roughly 14 billion years. The theory also predicts that, if we can detect some gravitational waves, it’s proof of the initial expansion during the Big Bang and the continued inflation that has been taking place ever since.

bicep2-640x425Between 2010 and 2012, the BICEP2 – a radio telescope situated at the Amundsen–Scott South Pole Station (pictured above) – the research team listened to the Cosmic Microwave Background (CMB). They were looking for hints of B-mode polarization, a twist in the CMB that could only have been caused by the ripples of gravitational waves. Following a lot of data analysis, the leaders announced that they found that B-mode polarization.

The work will now be scrutinized by the rest of the scientific community, of course, but the general consensus seems confident that it will stand up. In terms of scientific significance, the confirmation of gravitational waves would be the first direct evidence that the universe started out as nothing, erupted into existence 13.8 billion years ago, and has continued to expand ever since. This would confirm that cosmic inflation really exists and that the entire structure of the universe was decided in the beginning by the tiniest flux of gravitational waves.

planck-attnotated-580x372And that’s not only discovery of cosmic significance that was made in recent months. In this case, the news comes from NASA’s Fermi Gamma-ray Space Telescope, which has been analyzing high-energy gamma rays emanating from the galaxy’s center since 2008. After pouring over the results, an independent group of scientists claimed that they had found an unexplained source of emissions that they say is “consistent with some forms of dark matter.”

These scientists found that by removing all known sources of gamma rays, they were left with gamma-ray emissions that so far they cannot explain. And while they were cautious that more observations will be needed to characterize these emissions, this is the first time that potential evidence has been found that may confirm that this mysterious, invisible mass that accounts for roughly 26.8% of the universe actually exists.

darkmatter1To be fair, scientists aren’t even sure what dark matter is made of. In fact, it’s very existence is inferred from gravitational effects on visible matter and gravitational lensing of background radiation. Originally, it was hypothesized to account for the discrepancies that were observed between the calculations of the mass of galaxies, clusters and entire universe made through dynamical and general relativistic means, and  the mass of the visible “luminous” matter.

The most widely accepted explanation for these phenomena is that dark matter exists and that it is most probably composed of Weakly Interacting Massive Particles (WIMPs) that interact only through gravity and the weak force. If this is true, then dark matter could produce gamma rays in ranges that Fermi could detect. Also, the location of the radiation at the galaxy’s center is an interesting spot, since scientists believe that’s where dark matter would lurk since the insofar invisible substance would be the base of normal structures like galaxies.

fermi_gamma-raysThe galactic center teems with gamma-ray sources, from interacting binary systems and isolated pulsars to supernova remnants and particles colliding with interstellar gas. It’s also where astronomers expect to find the galaxy’s highest density of dark matter, which only affects normal matter and radiation through its gravity. Large amounts of dark matter attract normal matter, forming a foundation upon which visible structures, like galaxies, are built.

Dan Hooper, an astrophysicist at Fermilab and lead author of the study, had this to say on the subject:

The new maps allow us to analyze the excess and test whether more conventional explanations, such as the presence of undiscovered pulsars or cosmic-ray collisions on gas clouds, can account for it. The signal we find cannot be explained by currently proposed alternatives and is in close agreement with the predictions of very simple dark matter models.

Hooper and his colleagues suggest that if WIMPs were destroying each other, this would be “a remarkable fit” for a dark matter signal. They again caution, though, that there could be other explanations for the phenomenon. Writing in a paper submitted to the journal Physical Review D, the researchers say that these features are difficult to reconcile with other explanations proposed so far, although they note that plausible alternatives not requiring dark matter may yet materialize.

CERN_LHCAnd while a great deal more work is required before Dark Matter can be safely said to exist, much of that work can be done right here on Earth using CERN’s own equipment. Tracy Slatyer, a theoretical physicist at the Massachusetts Institute of Technology and co-author of the report, explains:

Dark matter in this mass range can be probed by direct detection and by the Large Hadron Collider (LHC), so if this is dark matter, we’re already learning about its interactions from the lack of detection so far.This is a very exciting signal, and while the case is not yet closed, in the future we might well look back and say this was where we saw dark matter annihilation for the first time.

Still, they caution that it will take multiple sightings – in other astronomical objects, the LHC, or direct-detection experiments being conducted around the world – to validate their dark matter interpretation. Even so, this is the first time that scientists have had anything, even tentative, to base the existence of Dark Matter’s on. Much like until very recently with the Big Bang Theory, it has remained a process of elimination – getting rid of explanations that do not work rather than proving one that does.

So for those hoping that 2014 will be the year that the existence of Dark Matter is finally proven – similar to how 2012 was the year the Higgs Boson was discovered or 2013 was the year the Amplituhedron was found – there are plenty of reasons to hope. And in the meantime, check out this video of a gamma-ray map of the galactic center, courtesy of NASA’s Goddard Space Center.


Sources:
extremetech.com, IO9.com, nasa.gov, cfa.harvard.edu, news.nationalgeographic.com

Judgement Day Update: Google Robot Army Expanding

Atlas-x3c.lrLast week, Google announced that it will be expanding its menagerie of robots, thanks to a recent acquisition. The announcement came on Dec. 13th, when the tech giant confirmed that it had bought out the engineering company known as Boston Dynamics. This company, which has had several lucrative contracts with DARPA and the Pentagon, has been making the headlines in the past few years, thanks to its advanced robot designs.

Based in Waltham, Massachusetts, Boston Dynamics has gained an international reputation for machines that walk with an uncanny sense of balance, can navigate tough terrain on four feet, and even run faster than the fastest humans. The names BigDog, Cheetah, WildCat, Atlas and the Legged Squad Support System (LS3), have all become synonymous with the next generation of robotics, an era when machines can handle tasks too dangerous or too dirty for most humans to do.

Andy-Rubin-and-Android-logoMore impressive is the fact that this is the eight robot company that Google has acquired in the past six months. Thus far, the company has been tight-lipped about what it intends to do with this expanding robot-making arsenal. But Boston Dynamics and its machines bring significant cachet to Google’s robotic efforts, which are being led by Andy Rubin, the Google executive who spearheaded the development of Android.

The deal is also the clearest indication yet that Google is intent on building a new class of autonomous systems that might do anything from warehouse work to package delivery and even elder care. And considering the many areas of scientific and technological advancement Google is involved in – everything from AI and IT to smartphones and space travel – it is not surprising to see them branching out in this way.

wildcat1Boston Dynamics was founded in 1992 by Marc Raibert, a former professor at the Massachusetts Institute of Technology. And while it has not sold robots commercially, it has pushed the limits of mobile and off-road robotics technology thanks to its ongoing relationship and funding from DARPA. Early on, the company also did consulting work for Sony on consumer robots like the Aibo robotic dog.

Speaking on the subject of the recent acquisition, Raibert had nothing but nice things to say about Google and the man leading the charge:

I am excited by Andy and Google’s ability to think very, very big, with the resources to make it happen.

Videos uploaded to Youtube featuring the robots of Boston Dynamics have been extremely popular in recent years. For example, the video of their four-legged, gas powered, Big Dog walker has been viewed 15 million times since it was posted on YouTube in 2008. In terms of comments, many people expressed dismay over how such robots could eventually become autonomous killing machines with the potential to murder us.

petman-clothesIn response, Dr. Raibert has emphasized repeatedly that he does not consider his company to be a military contractor – it is merely trying to advance robotics technology. Google executives said the company would honor existing military contracts, but that it did not plan to move toward becoming a military contractor on its own. In many respects, this acquisition is likely just an attempt to acquire more talent and resources as part of a larger push.

Google’s other robotics acquisitions include companies in the United States and Japan that have pioneered a range of technologies including software for advanced robot arms, grasping technology and computer vision. Mr. Rubin has also said that he is interested in advancing sensor technology. Mr. Rubin has called his robotics effort a “moonshot,” but has declined to describe specific products that might come from the project.

Cheetah-robotHe has, however, also said that he does not expect initial product development to go on for some time, indicating that Google commercial robots of some nature would not be available for several more years. Google declined to say how much it paid for its newest robotics acquisition and said that it did not plan to release financial information on any of the other companies it has recently bought.

Considering the growing power and influence Google is having over technological research – be it in computing, robotics, neural nets or space exploration – it might not be too soon to assume that they are destined to one day create the supercomputer that will try to kill us all. In short, Google will play Cyberdyne to Skynet and unleash the Terminators. Consider yourself warned, people! 😉

Source: nytimes.com

Masdar City

Imagine a city that runs entirely on solar energy and other renewable energy source. A city that generates entirely no carbon and no waste, with mass transit that relies on electronic, computer-controlled pod cars. That is the concept behind Masdar City, a planned urban environment located 17 km south-east of the capital of the United Arab Emirates (Abu Dhabi).

Designed by the British architectural firm Foster and Partners, and with the majority of the seed capital coming from the government of Abu Dhabi, Masdar is a blueprint for future cities based on sustainability, clean energy, and the latest and best in manufacturing, recycling and waste management technology. On top of that, it will contain some of the most advanced facilities in the world, dedicated to science, commerce and eduction.

In essence, it is the answer of what to do about rapidly advancing technology, urban growth, and development in the developing world. Point of interest include:

Masdar Institute:
Wouldn’t you know it? At the heart of a city based on sustainability and clean energy is an institute dedicated to the furtherance of these very things. Known as the Masdar Institute of Science and Technology (MIST), this research-oriented university was developed in conjunction with the Massachusetts Institute of Technology and focuses on the development of alternative energy, sustainability, and the environment.

In addition, its facilities use 70% less electricity and potable water than normal buildings of similar size and is fitted with a metering system that constantly observes power consumption. It’s full range of programs include Chemical Engineering, Mechanical Engineering, Material Science and Engineering, Engineering Systems and Management, Water and Environmental Engineering, Computing & Information Science, Electrical Power Engineering and Microsystems.

Renewable Energy:
In addition to its planned 40 to 60 megawatt solar power plant, which will power further construction projects, with additional solar panels to  be placed on rooftops, for a total output of 130 megawatts. In addition, wind farms will be established outside the city’s perimeter capable of producing up to 20 megawatts, and the city intends to utilise geothermal energy as well.In addition, Masdar plans to host the world’s largest hydrogen power plant, a major breakthrough in terms of clean energy!

Water Management:
When it comes to water consumption, that too will be handled in an environmentally-friendly way that also utilizes solar energy. At the hear of this plan lies a solar-powered desalination plant. Approximately 80 percent of the water used will be recycled and waste greywater will be reused for crop irrigation and other purposes.

Waste Management:
As already noted, the city will also attempt to reduce waste to zero. Biological waste will be used to create nutrient-rich soil and fertiliser, and plans exist to incinerate it for the sake of generating additional power. Industrial waste, such as plastics and metals, will be recycled or re-purposed for other uses. The exterior wood used throughout the city is Palmwood, a sustainable hardwood-substitute developed by Pacific Green using plantation coconut palms that no longer bear fruit.

Transportation:
Initially, the planners for Masdar considered banning the use of automobiles altogether, focusing instead on mass transit and personal rapid transit (PRT) systems, with existing road and railways connecting to other locations outside the city. This systems utilize a series of podcars, designed by the company 2getthere, contains 10 passenger and 3 freight vehicles and serves 2 passenger and 3 freight stations connected by 1.2 kilometers of one-way track.

The cars travel at an average of 20km/h (12mph), trips take about 2 and a half minutes and are presently free of charge. Last year, a system of 10 Mitsubishi i-MiEV electric cars was deployed as part of a one-year pilot to test a point-to-point transportation solution for the city to complement the PRT and the freight rapid transit (FRT).

Summary:
Given the mounting environmental crisis this planet faces, cities like Masdar may very well be the solution to future urban planning and expansion. But of course, as an incurable sci-fi geek, I also consider cities like this to be a handy blueprint for the day when it comes time to plan extra-solar and even exoplanet settlements. Not only are they effective at curbing our carbon footprint and environmental impact, they are also a  good way to start over fresh on a new world!

Related links:
Masdar Institute (http://www.masdar.ac.ae/)
Masdar City (http://www.masdar.ae/en/home/index.aspx)