Immortality Inc: Regrowing Body Parts

https://i0.wp.com/images.gizmag.com/hero/lizardtails-2.jpgAnyone who has ever observed a lizard must not have failed to notice that they are capable of detaching their tails, and then regenerating them from scratch. This propensity for “spontaneous regeneration” is something that few organisms possess, and mammals are sadly not one of them. But thanks to a team of Arizona State University scientists, the genetic recipe behind this ability has finally been unlocked.

This breakthrough is a small part of a growing field of biomedicine that seeks to improve human health by tampering with the basic components (i.e. our DNA). The research, which was funded by grants from the National Institutes of Health and Arizona Biomedical Research Commission, also involved scientists from the University of Arizona College of Medicine, Translational Genomic Research Institute, and Michigan State University.

dna_cancerAccording to Prof. Kenro Kusumi, lead author of a paper on the genetic study, lizards are the most closely-related animals to humans that can regenerate entire appendages. They also share the same genetic language as us, so it’s theoretically possible that we could do what they do, if only we knew which genes to use and in what amounts. As Kusumi explains in the paper, which was published Aug. 20 in the journal PLOS ONE. :

Lizards basically share the same toolbox of genes as humans. We discovered that they turn on at least 326 genes in specific regions of the regenerating tail, including genes involved in embryonic development, response to hormonal signals, and wound healing.

Other animals, such as salamanders, frog tadpoles, and fish, can also regenerate their tails. During tail regeneration, they all turn on genes in what is called the ‘Wnt pathway’ — a process that is required to control stem cells in many organs such as the brain, hair follicles and blood vessel. However, lizards have a unique pattern of tissue growth that is distributed throughout the tail.

calico-header-640x353 It takes lizards more than 60 days to regenerate a functional tail — forming a complex regenerating structure with cells growing into different tissues at a number of sites along the tail. According to Katsumi, harnessing this would be a boon for medicine for obvious reasons:

Using next-generation technologies to sequence all the genes expressed during regeneration, we have unlocked the mystery of what genes are needed to regrow the lizard tail. By following the genetic recipe for regeneration that is found in lizards, and then harnessing those same genes in human cells, it may be possible to regrow new cartilage, muscle or even spinal cord in the future.

The researchers also hope their findings will also help repairing birth defects and treating diseases such as arthritis. Given time, and enough positive results, I think it would be fair to expect that Google’s Clinical Immortality subsidiary – known as Calico – will buy up all the necessary rights. Then, it shouldn’t be more than a decade before a gene treatments is produced that will allow for spontaneous regeneration and the elimination of degenerative diseases.

The age of post-mortal is looming people. Be scared/enthused!

Sources: kurzweil.net, gizmag.com

The Future is Here: Silk Brain Implant to Treat Epilespy

silk_implantsSilk implants are becoming the way of the future as far as brain implants are concerned, due to their paradoxically high resiliency and ability to dissolve. By combining them with nanoelectric circuits or drugs, scientists are exploring several possible applications, ranging from communications devices to control prosthetics and machines to medicinal devices that could treat disabilities and mental illnesses.

And according to a recent study released by the National Institutes of Health, treating epilepsy is just the latest application. According to the study, when administered to a series of epileptic rats, the treatment led to the rats experiencing far fewer seizures. What’s more, this new treatment represents something entirely new in terms of treatment of neurological disorder.

brain_chipFor starters, Rebecca L. Williams-Karneskyand and her colleagues used the silk implants for a timed-release therapy in rats experiencing epileptic seizures. Working on the theory that people with epilepsy suffer from a low level of adenosine – a chemical that the brain releases naturally to suppress seizures (and also perhaps movement during sleep) – they soaked the silk implants before implanting them.

Those rats who recieved the silk brain implants still had seizures, but their numbers were reduced fourfold. The implant released the chemical for ten days before they completely dissolved. And with time and testing, the treatment could very easily be made available for humans. According to the study’s co-author, Detlev Boison:

Clinical applications could be the prevention of epilepsy following head trauma or the prevention of seizures that often — in about 50 percent of patients — follow conventional epilepsy surgery. In this case, adenosine-releasing silk might be placed into the resection cavity in order to prevent future seizures.

brainscanBetween the timed release of drugs and nanoelectric circuits that improve neuroelasticity, recall and relaxation, brain implants are coming a long way. At one time, they were the province of cyberpunk science fiction. But thanks to ongoing research and development, they are quickly jumping from the page and becoming a reality.

Though they currently remain confined to medical tests and laboratories, experts agree that it will be just a few years time before they are commercially available. By sometime in the coming decade, medimachines and neural implants will probably become a mainstay, and neurological disorders a fully treatable phenomena.

Sources: io9.com, nih.gov