Well, it seems Star Trek might have gotten another one right. In addition to warp travel, computer pads, and the possibility of a real-life star ship Enterprise being built by 2030, it seems that ion engines that can propel ships on interplanetary missions are also possible. As a staple of many science fiction franchises, many have wondered whether or not the technology would ever be truly feasible.
For years, NASA has been experimenting with various ionic propulsion drives. But with this latest announcement, they’ve not only indicated success, but broke a world record. On Dec 28th, in one of the last news stories of the year, NASA announced that their Evolutionary Xenon Thruster (NEXT) has operated continually for over 43,000 hours (just shy of five years). Since ion thrusters are believed to be one of the best ways to power long-term deep-space missions, this is a big step towards powering NASA’s next-gen spacecraft.
As the name suggests, ion thrusters work by firing ions (charged atoms or molecules) out of a nozzle at high speed. In the case of NEXT, Xenon (a noble gas) is squirted into a chamber where its molecules are charged via an electron gun, creating a plasma of negative and positive ions. The positive ions diffuse to the back of the chamber, where high-charged accelerator grids grabs them and propel them out of the engine, creating thrust.
The upside of such a thruster lies in its fuel efficiency, in that it uses 10-12 times less fuel than a regular chemical thruster. Unfortunately, the downside lies in the thrust, again relative to its chemical counterparts. Due to this, NASA scientists calculated that an ion engine needs to operate continuously for a minimum of 10,000 hours (roughly a year) to slowly accelerate a spacecraft to speeds necessary to reach the asteroid belt or beyond.
With this test, NASA proved that their new ion thruster would not only be able to propel a spaceship to the asteroid belt, but to the outer planets and their moons as well. That’s good news for people looking forward to visiting Ganymede, Europa, Titan, and maybe even the Kuiper Belt. What’s more, the maximum speed of the spacecraft would be in the region of 321,000 km/h (200,000 mph).
Back in 2011, NASA put out a request-for-proposals for a test mission that will likely use a NEXT engine. Presumably, following this successful engine test, we might be hearing more about this in the near future. And, now that the proof in the pudding, other space agencies are likely to unveil their own prototypes for ion engines, and even equipping the next generation of space craft with them.
Asteroid mining? Mars colonization? Off-world resource and manufacturing allocation? Looks like we got ourselves the means to get us there! Oh, and Star Trek nerds? Looks like you guys got your nacelles! Full impulse ahead!
Source: Extremtech.com, NASA.org