News from Space: Mysterious Radio Waves Detected…

auriga_nebulaAccording to a story published on July 10 in The Astrophysical Journal, a radio burst was detected that may have originated outside of our galaxy. Apparently, these split-second radio bursts have heard before, but always with the same telescope – Parkes Observatory in Australia. Given that only this observatory was detecting these signals, there was debate about whether they were coming from inside our galaxy, or even from Earth itself.

However, this time the radio signals were detected by a different telescope – the Arecibo Observatory in Puerto Rico – which concluded that the bursts are coming from outside the galaxy. This is also the first time one of these bursts have been found in the northern hemisphere of the sky. Exactly what may be causing such radio bursts represents a major new enigma for astrophysicists.

Victoria Kaspi, an astrophysics researcher at McGill University who participated in the research, explained:

Our result is important because it eliminates any doubt that these radio bursts are truly of cosmic origin. The radio waves show every sign of having come from far outside our galaxy – a really exciting prospect.

arecibo_arrayFast radio bursts are a flurry of radio waves that last a few thousandths of a second, and at any given minute there are only seven of these in the sky on average, according to the Max Planck Institute for Radio Astronomy. Their cause is unknown, and the possibilities range from black holes, to neutron stars coming together, to the magnetic field of pulsars (a type of neutron star) flaring up.

The pulse was detected on Nov. 2, 2012, at the Arecibo Observatory – a National Science Foundation-sponsored facility that has the world’s largest and most sensitive radio telescope. While fast radio bursts last just a few thousandths of a second and have rarely been detected, the international team of scientists reporting the Arecibo finding estimate that these bursts occur roughly 10,000 times a day over the whole sky.

MaxPlanckIns_radiowavepulseThis astonishingly large number is inferred by calculating how much sky was observed, and for how long, in order to make the few detections that have so far been reported. Laura Spitler, a postdoctoral researcher at the Max Planck Institute for Radio Astronomy in Bonn, Germany and the lead author of the new paper, was also the first person to note the event. As she explained:

The brightness and duration of this event, and the inferred rate at which these bursts occur, are all consistent with the properties of the bursts previously detected by the Parkes telescope in Australia.

The bursts appear to be coming from beyond the Milky Way, based on measurement of an effect known as plasma dispersion. Pulses that travel through the cosmos are distinguished from man-made ones by the effect of interstellar electrons, which cause radio waves to travel more slowly at lower radio frequencies. The burst detected by the Arecibo telescope has three times the maximum dispersion measure that would be expected from a local source.

Four_antennas_ALMAEfforts are now under way to detect radio bursts using radio telescopes that can observe broad swaths of the sky to help identify them. Telescopes under construction in Australia and South Africa as well as the CHIME telescope in Canada have the potential to detect fast radio bursts. Astronomers say these and other new facilities could pave the way for many more discoveries and a better understanding of this mysterious cosmic phenomenon.

For those hoping this was a possible resolution to the Fermi Paradox – i.e. that the radio bursts might have been extra-terrestrial in origin – this news is a little disappointing. But in truth, its yet another example of the deeper mysteries of the universe at work. Much like our ongoing research into the world of elementary particles, every answer gives rise to new questions.

Sources: universetoday.com, kurzweilai.net

News from Space: ISS Sends First Transmission with Lasers

ISS In recent years, the International Space Station has become more and more media savvy, thanks to the efforts of astronauts to connect with Earthbound audiences via social media and Youtube. However, the communications setup, which until now relied on 1960’s vintage radio-wave transmissions, was a little outdated for this task. However, that has since changed with the addition of the Optical Payload for Lasercom Science (OPALS) laser communication system.

Developed by NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, OPALS is designed to test the effectiveness of lasers as a higher-bandwidth substitute for radio waves and deal with substantially larger information packages. As Matt Abrahamson, OPALS mission manager at NASA’s Jet Propulsion Laboratory, said in a recent video statement:

We collect an enormous amount of data out in space, and we need to get it all to the ground. This is an alternative that’s much faster than our traditional radio waves that we use to communicate back down to the ground.

nasa-opalsThe OPALS laser communication system was delivered to the ISS on April 20 by a SpaceX unmanned Dragon space freighter and is currently undergoing a 90-day test. For this test, the crew used the OPALS to transmit the “Hello, World” video from the ISS to a ground station on Earth. This was no simple task, since the station orbits Earth at an altitude of about 418 km (260 mi) at travels at a speed of 28,000 km/h (17,500 mph). The result is that the target is sliding across the laser’s field of view at an incredibly fast rate.

According to Bogdan Oaida, the OPALS systems engineer at JPL, this task was pretty unprecedented:

It’s like trying to use a laser to point to an area that’s the diameter of a human hair from 20-to-30 feet away while moving at half-a-foot per second. It’s all about the pointing.

However, the test went off without a hitch, with the 37 second-long video taking 3.5 seconds to transmit – much faster than previous downlink methods. Abrahamson said that the video, which is a lively montage of various communication methods, got its title as an homage to the first message output by standard computer programs.

earth-from-ISSThe OPALS system sought out and locked onto a laser beacon from the Optical Communications Telescope Laboratory ground station at the Table Mountain Observatory in Wrightwood, California. It then transmitted its own 2.5-watt, 1,550-nanometer laser and modulated it to send the video at a peak rate of 50 megabits per second. According to NASA, OPALS transmitted the video in 3.5 seconds instead of the 10 minutes that conventional radio would have required.

Needless to say, the astronauts who contribute to the ISS’s ongoing research programs are pretty stoked about getting this upgrade. With a system that is capable of transmitting exponentially more information at a faster rate, they will now be able to communicate with the ground more easily and efficiently. Not only that, but educational videos produced in orbit will be much easier to send. What’s more, the ISS will have a much easier time communicating with deep space missions in the future.

nasa-opals-5This puts the ISS in a good position to oversea future missions to Mars, Europa, the Asteroid Belt, and far, far beyond! As Abrahamson put it in the course of the video statement:

It’s incredible to see this magnificent beam of light arriving from our tiny payload on the space station. We look forward to experimenting with OPALS over the coming months in hopes that our findings will lead to optical communications capabilities for future deep space exploration missions.

And in the meantime, check out the video from NASA’s Jet Propulsion Laboratory, showing the “Hello World” video and explaining the groundbreaking implications of the new system:


Sources:
cnet.com, gizmag.com

The Future is Here: Pure LiFi Wireless Internet

lifi_internet1It’s known as “Light Fidelity”, a new form of wireless data transmission that does away with radio signals in favor of optics. And much like the concept of an optic computer – which uses photons to transfer and store information rather than electrons – it’s long been considered as the next possible leap in internet technology. Hence why it was being demonstrated at this year’s Mobile World Congress – the world’s largest exhibition for members of the mobile phone, internet and IT industry.

Despite its monumental growth in the last decade, Wi-Fi remains somewhat hindered by the fact that it relies on microwaves in the 2.4 GHz and 5 GHz bands, a radio spectrum which is limited. LiFi, however, relies on the transmission of light and could be deployed in everyday LED bulbs, covering the entire interior of a home or office. These LED bulbs would send information out in what appears to be a constant stream of light, but which is actually made up of millions of micropulses a second.

Mobile-World-Congress-MWC-PreviewA system based on this would be capable of transferring far larger bundles of data than one based on microwaves. The system that was on display at MWC this year ran at 150 Mbps. But with a more powerful LED light, it could conceivably reach a rate of transfer equal to 3.5 gigabytes per second. That’s 210 gigabytes a minute, and 12.6 terabytes (that 12 and a half trillion bytes, people!) every hour, far in advance of what current WiFi offers (which maxes out at 450 mbps).

To put that in perspective, as of March 2014, the US Library of Congress estimated that their web had cataloged 525 terabytes of web archive data, with an addition 5 terabytes added every month. This means that a LiFi connection running at full capacity transfers in one hour what the Library of Congress processes in over two months! In short, the widespread use of LiFi would mean an explosion in information the likes of which has not been seen since the internet first went online.

Pure_LiFi_MWC2014Granted, there are still some limitations, like how any computer running off of LiFi needs a special adapted, and interrupting the light source will cause information transfers to cease. And I can’t help but wonder what micropulsing lights will do for people with epilepsy, not to mention the rest of us. However, such concerns are likely to be addressed long before LiFi sees any adoption on a grand scale, which is likely still a decade away at this point.

This year, the MWC conference took place in Barcelona, a place committed to the concept of the Internet of Everything (IoE) and the building of the world’s first truly “smart city”. In the coming months and years, I anticipate that this Spanish haven for technological innovation and integration will feature plenty of LiFi. So if you’re traveling there, you might want to look into getting an adapter for your laptop.

And in the meantime, enjoy this video – courtest of CNET First Look – that takes a look at this year’s LiFi demonstration at MWC 2014:


Sources:
news.cnet.com, loc.gov

The Future is Here: Radiowave-Powered Devices

radio-waves-airwaves-spectrumIt sounds like something out of science fiction, using existing existing internet electromagnetic signals to power our devices. But given the concerns surrounding ewaste and toxic materials, anything that could make an impact by eliminating batteries is a welcome idea. And if you live in an urban environment, chances are you’re already cloaked in TV and radio waves invisible that are invisible to the naked eye.

And that’s precisely what researchers at the University of Washington have managed to do. Nine months ago,  Joshua Smith (an associate professor of electrical engineer) and Shyam Gollakota (an assistant professor of computer science and engineering) started investigating how one might harvest energy from TV signals to communicate, and eventually designed two card-like devices that can swap data without using batteries.

wireless-device1Running on what the researchers coined “ambient backscatter,” the device works by capturing existing energy and reflecting it, like a transistor. Currently, our communications and computing devices require a lot of power, even by battery, in order to function. But as Gollakota explains, all of these objects are already creating energy that could be harnessed:

Every object around you is reflecting signals. Imagine you have a desk that is wooden, and it’s reflecting signals, but if you actually make [the desk] iron, it’s going to reflect a much larger amount of energy. We’re trying to replicate that on an analog device.

The new technique is still in its infancy, but shows great promise. Their device transfers data at a rate of one kilobit per second and can only transmit at distances under 2.5 feet. Still, it has exciting implications, they say, for the “Internet of things.” The immediate use for this technology, everything from smart phones to tablets and MP3 players, is certainly impressive.

wireless-deviceBut on their website, the team provides some added examples of applications that they can foresee taking advantage of this technology. Basically, they foresee an age when backscatter devices can be implanted in just about anything ranging from car keys and appliances to structural materials and buildings, allowing people to find them if they get lost, or to be alerting people that there’s some kind of irregularity.

As Smith claimed on the team’s website:

I think the Internet of things looks like many objects that kind of have an identity and state–they can talk to each other. Ultimately, I think people want to view this information… That’s part of the vision. There will be information about objects in the physical world that we can access.

The energy harvester they used for the paper, which they presented at the Association for Computing Machinery’s Special Interest Group on Data Communication in Hong Kong, requires 100 microwatts to turn on, but the team says it has a design that can run on as low as 15 microwatts. Meanwhile, the technique is already capable of communicating location, identity, and sensor data, and is sure to increase in range as efficiency improves.

vortex-radio-waves-348x196The University of Washington presentation took home “best paper” in Hong Kong, and researchers say they’re excited to start exploring commercial applications. “We’ve had emails from different places–sewer systems, people who have been constrained by the fact that you need to recharge things,” Gollakota says. “Our goal for next six months is to increase the data rate it can achieve.”

Combined with Apple’s development of wireless recharging, this latest piece of technology could be ushering in an age of  wireless and remotely powered devices. Everything from smartphones, tablets, implants, and even household appliances could all be running on the radio waves that are already permeating our world. All that ambient radiation we secretly worry is increasing our risks of cancer would finally be put to good use!

And in the meantime, enjoy this video of the UofW’s backscatter device in action: