Almost Done!

Almost Done!

Hey all! I have more in the way of novel-writing news. For starters, The Cronian Incident is now just a few chapters short of completion. After over a year of writing, editing, and back and forth with my prospective-publisher, the novel is just about finished. All told, it is now 31 chapters long and just over 85,000 words in length. I anticipate it will be about 100,000 by the time its finished, though I have been known to exceed estimates in the past!

And as per my agreement with my publisher, I have begun working on its sequel. Apparently, publishers like to know the people they sign have more books in them. And they prefer to release sequels within a few months of the first book, to ensure that any buzz they generate with the first release can be capitalized on. Lucky for me I had plans for a second and third novel before my publisher and I started talking, not to mention some spin offs.

So here’s the commercial description for the proposed sequel (i.e. what you’d read on the back of the dust jacket), as well as a rundown on some other ideas I’m working on:

The Jovian Manifesto:

The Solar System is in the midst of a crisis. In the Jovian and Cronian systems, the populations are up in arms, thanks to an inflammatory document that has appeared on the local nets. Known as “The Jovian Manifesto”, this document details how a powerful faction in the Inner Solar System conspired to seize control over the moons of Callisto and Titan and forcibly alter them. Behind the leak is a mysterious personality known only as Clio, who is threatening to release all the details unless the guilty parties come forward.

Back on Venus, a former analyst named Valéria Gallego is called before the Solar Assembly to investigate the Manifesto and its author. In this, she is assisted by Kadera, an infiltration specialist who can get in and out of any location in the Solar System. If they can determine its authenticity, perhaps they can prevent open conflict. But if not, the Inner Worlds may have no choice but to send armed forces to the Outer Worlds to ensure peace and stability.

Meanwhile, a string of violent acts has threatened to bring things ever closer to the brink. For Gallego and all those who are seeking the truth, time is running out…

Luna Invictus:

Now this is a book that doesn’t come with a commercial description, just a general one. But it is set in the same universe as The Cronian Incident and The Jovian Manifesto. Here’s what I am thinking. Basically, I wanted to do a story set on the Moon, ca. the 22nd century, when the Moon is now effectively colonized,,,

Between the European Space Agency (ESA), NASA, the Russians (Roscosmos), India (the ISRO), and China (CNSA), the lunar surface now has multiple permanent settlements. Whereas the ESA and NASA have established themselves at the southern polar region – in a domed settlement in the Shackleton Crater – and the Chinese have established a colony in the northern polar region, the Russians and Indians have claimed the mid-latitudes, where stable lava tubes have allowed for the creation of underground cities.

And on the “Dark Side” of the Moon – that is to say, the side looking away from Earth – are a series of installations known as the Unrestricted Zones. It is here that all kinds of weird research, development and experiments take place. Nanotechnology, biotechnology, quantum computing, and man-machine interface – anything goes in these places! Ever since the explosion in learning that took place during the previous century, places all over Earth and the Moon have become dedicated to pursuing technological progress and integration without restriction.

And it is here that a young man named Frankling Houte is seeking to go. Years ago, his sister – named Constant Houte – chose to undergo a procedure where her organic brain would be augmented by merging it with quantum components. But after all contact ceased, he is determined to find her and return her home. But whereas Franklin fancies himself a brave rescuer, it is his sister who will come to save him.

Transverse:

This story will take place entirely in a generation ship that is making its way towards the nearby star system. Within the confines of this self-contained world, thousands of humans have committed to waiting and working for generations as their massive ship – the Traverse Velocity, which in astronomical terms refers to the speed at which a star moves perpendicular to our line of sight – transports them to an Earth-like world outside of our Solar System.

The location of that world is up for grabs at the moment, mainly because new discoveries are being made all the time. Did you hear about the latest exoplanet discovery, located about 39 light years away and already said to be the “best place to look for signs of life beyond the Solar System”? Between that and new findings that claims how previous discoveries are not likely to be habitable after all, I’ve decided to leave the destination blank until I actually start writing it!

But of course, no story would be complete without some intrigue and big ol’ inciting event! And the way I see it, things begin to go awry when the Captain and crew get notification that one of the passengers has awakened from cryosleep prematurely and disappeared into the ship. Shortly thereafter, one of the crew is found dead in what appears to be a sabotage attempt gone wrong. A ship-wide search begins to find the culprit while the atmosphere quickly devolves into one of paranoia and suspicion.

To make matter worse, the crew becomes aware of another ship that is threatening to catch up and overtake them. It seems that another faction from the Solar System, which was also intent on settling (insert exoplanet here) is now trying to get their ahead of them. What began as a journey to a new world, characterized by hopes and dreams, has become a race to lay claim to a planet. And it appears that the planet may have inhabitants of its own, ones which are not interested in welcoming the intruders.

Terraforming Series Complete!

Terraforming Series Complete!

I’ve been busy over at Universe Today of late. In fact, as part of a promotional thing for my upcoming book – The Cronian Incident – I’ve been doing a series of articles about terraforming. And it’s actually kind of an interesting story, which I already touched on in a previous post. In any case, the series is now complete, with articles that cover everything from terraforming Mercury to terraforming the moons of the gas giants in the outer Solar System:

The Definitive Guide to Terraforming
How Do We Terraform Mercury?
How Do We Terraform Venus?
How Do We Terraform Mars?
How Do We Terraform the Moon?
How Do We Terraform Jupiter’s Moons?
How Do We Terraform Saturn’s Moons?

To give people the Cliff Notes version of this series, it is clear that at this point, humanity could colonize and terraform certain worlds in our Solar System. The only real questions are where could we? How could we? And why should we? To answer the first two, we could terraform Mars and Venus, since both planets are terrestrial (like Earth), both exist in our Sun’s habitable zone (like Earth), and have either abundant atmospheres or abundant sources of water we can work with. In any other case, the matter becomes impractical, except within certain contained environments (paraterraforming).

mars_greening
The “greening of Mars”. Credit: nationalgeographic.com

As for the third question – why should we? – that was one of the main reasons I tackled this subject. When it comes to terraforming, the questions concerning ethics and responsibility are unavoidable. And while I did my best to cover this in the course of writing the series, the real debate happened in the comments section. Again and again, people asked the following questions:

How can we live elsewhere when we can’t even take care of Earth?
Shouldn’t we take care of our problems here before we settle other worlds?
Wouldn’t those resources be better spent here?

All good (and predictable) questions. And rather than simply avoiding them or dismissing them as pedestrian, I wanted to seriously have an answer. And so I chose to reply whenever these questions, or some variation, popped up. Here’s the basics of why we should terraform other worlds in this century and the next:

1. Increased Odds of Survival:
As Elon Musk is rather fond of sharing, colonizing Mars was one of the main reasons he started SpaceX (which recently made their second successful landing of the reusable Falcon 9 rocket!) His reason for establishing this colony, he claims, is to create a “backup location” for humanity. And in this, he has the support of many policy analysts and space enthusiasts. Faced with the threat of possible extinction from multiple fronts – an asteroid, ecological collapse, nuclear war, etc. – humanity would have better odds of survival if it were a multi-planet species.

Artist's concept for a possible colony on Mars. Credit: Ville Ericsson
Artist’s concept for a possible colony on Mars. Credit: Ville Ericsson

What’s more, having other locations around the Solar System decreases the odds of us ruining Earth. So much of why Earth’s environment is threatened has to do with the impact human populations have on it. Currently, there are over 7 billion human beings living on planet Earth, with an additional 2 to 3 billion expected by mid-century, and between 10 and12 by the 2100. But it’s not just the number of people that matters. In addition to every human being constituting a mouth to feed, they are also a pair of hands that need to given something productive to do (lest they turn to something destructive).

Every human also requires an education, a place to live, and basic health and sanitation services to make sure they do not die prematurely. And providing for all of this requires space and a great deal of resources. As it stands, it is becoming more and more difficult to provide for those we have, and our ability to do so is dwindling (i.e. thanks to Climate Change). If we intend to survive as a species, we not only need new venues to expand to, we need other resource bases to ensure that our people can be fed, clothed, housed, and employed.

So simply put, creating permanent settlements on the Moon, Mars, and elsewhere in the Solar System could ensure that humanity survives, especially if (or when) our efforts to save Earth from ourselves fail.

Project Nomad, a concept for the 2013 Skyscraper Competition that involved mobile factory-skyscrapers terraforming Mars. Credit: evolo.com/A.A. Sainz/J.R. Nuñez/K.T. Rial
Project Nomad, a concept for the 2013 Skyscraper Competition that involved mobile factory-skyscrapers terraforming Mars. Credit: evolo.com/A.A. Sainz/J.R. Nuñez/K.T. Rial

2. Testing out Ecological and Geological Engineering Techniques:
Basically, there is no way humanity is going to be able to address Climate Change in this century if we do not get creative and start relying on techniques like carbon capture, carbon sequestration, solar shades, and artificially triggered global dimming and fungal blooms. The problem is, any or all of these techniques need to be tested in order to ensure that the results are just right. Altering our environment would not only threaten to disrupt systems human being depend upon for their livelihood, it could also threaten the lives of many people.

Such is the threat Climate Change poses, so we want to make sure the ways in which we address it helps the environment instead of screwing it up further. The best way to do that is to have testing grounds where we can try out these techniques, and where a misstep won’t result in the loss of innocent lives or billions in damages. Ergo, testing our methods on Mars and Venus will give us a chance to measure their effectiveness, while avoiding any of the political barriers and potential hazards using them on Earth would present.

3. Mars and Venus are Perfect Testing Grounds:
Astronomers have been aware for some time that Mars and Venus are similar to Earth in many ways. As previously mentioned, they are both terrestrial planets that are located in our Sun’s habitable zone. But of course, they are also different in several key respects. Whereas Mars’ atmosphere is very thin, it has no magnetosphere, and its surface is extremely cold and dry, Venus has an atmosphere that it extremely dense, hot enough to melt lead, and where sulfuric acid rains are common.

terraforming-mars2
Artist’s impression of a atmospheric generator on Mars. Credit: futurism.com

The reasons for this? Mars sits at the outer edge of the Sun’s habitable zone and receives less warmth. Combined with its eccentric orbit – and a lack of a protective magnetosphere that caused it to lose its atmosphere billions of years ago – this is what has led to it becoming the very cold and dry planet we are familiar with. Venus, sitting on the inner edge of the Sun’s habitable zone, suffered a runaway Greenhouse Effect early in its history, which caused it to become the extremely hot and hellish world it is today.

Terraforming Mars would therefore require that we thicken the atmosphere and warm it up. This means triggering a Greenhouse Effect by pumping lots of CO2 and nitrogen (probably in the form of ammonia) into its atmosphere and then converting them using cyanobacteria and other species of bacteria. So basically, to make Mars more Earth-like, we could build heavy industry there to pollute the hell out of the place – something we’ve been doing here on Earth for hundreds of years! – and then test out techniques designed to convert the atmosphere into something breathable. What we learn could then be applied here at home.

The same holds true for Venus. In order to terraform that world into something livable for humanity, the first challenge will be to arrest the runaway Greenhouse Effect there and convert the carbon dioxide/sulfur dioxide-rich atmosphere into one composed of nitrogen and oxygen gas. There are many ways to do this, and testing one or more of them out will yield crucial data for using similar techniques on Earth. In a nutshell, transforming Mars and Venus will help us save Earth.

Artist’s concept of a Venus cloud city – part of NASA’s High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center
Artist’s concept of a Venus cloud city – part of NASA’s High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center

4. Our Solar System has Abundant Resources:
Between the Moon, Mars, Venus, Mercury, the Asteroid Belt, and the systems of Jupiter, Saturn and beyond, there are literally enough resources to last humanity indefinitely. And while we can’t hope to possess them all at once, every step in colonizing the Solar System offers us the chance to expand our resource base, conduct scientific research and exploration, add more land which we can develop and use for human settlement, and ultimately grow as a species.

To break this process down piecemeal, we must start with the Moon. By establishing a colony in its southern polar region, we could leverage the local resources to create a permanent settlement and use it as a refueling base for mission deeper into the Solar System (a move which would save billions on all future missions). Solar operations could also be built on the surface to beam energy to Earth, the Moon’s rich minerals could be mined for Earth industries, and the mining of Helium-3 could power fusion reactors all over the world.

Already, NASA is eying the Shakelton Crater as a possible location, where there is an abundance of water ice and a dome could be built over it to create a contained atmosphere. The moon’s stable lava tunnels also present a good site, since they are large enough to fit entire cities within them and would hold an atmosphere nicely. And from there, humanity could mount missions to Venus and Mars, which would in turn add their abundant supplies of minerals to our economy.

The European Space Agency's concept for a Moon base. Credit: ESA
The European Space Agency’s concept for a Moon base. Credit: ESA

Mercury would also present a major opportunity for mining and solar operations.  And like the Moon, colonies could be built in the permanently shaded regions around the northern and southern polar regions (where there are abundant supplies of water ice) and in underground stable lava tubes. The Asteroid Belt literally has enough minerals and ices to keep humanity supplied indefinitely (hence the interest in asteroid prospecting of late), and the outer Solar System has enough ice, volatiles, and organic compounds to do the same.

In short, step by step, the colonization and/or terraforming of our Solar System offers humanity the opportunity to become a post-scarcity race. While many decry the idea of our species expanding because of the greed and abuse we have demonstrated in the past (and continue to demonstrate today), much of this greed and abuse comes from the fact that our current economic models are based on scarcity. By removing that from the equation, it would be that much more difficult for human beings to hoard resources for themselves while denying their neighbor.

Faced with all of this, the question no is longer one of “why should we”, but rather “why shouldn’t we?” Why shouldn’t we establish a human presence elsewhere in the Solar System, knowing that it could not only help us to save Earth, but ensure our survival as a species for the indefinite future? This of course does not address all the challenges that remain in doing so, but it does tackle one of the biggest arguments there is against space exploration and colonization.

Still pic from Wanderers, by Erik Wernquist
Still pic from Wanderers, by Erik Wernquist

As for the rest? Well, I’m sure we’ll tackle those questions, and then some, when the time comes. In the meantime, I encourage everyone to keep looking up at the stars and saying the question, “why not?”

The Cronian Incident – Factions in the Future

 

future_city
Future City [3] by josueperez79 at deviantart.com
Hi again folks! I’m back with some thoughts from my most recent story project – The Jovian Incident. I know, what else is new, right? Writing can be a self-indulgent process. But if there’s one thing I’ve learned, its that sharing helps when it comes to developing a story. It helps you articulate your thinking and ideas, especially if respected peers tell you what they think (hint, hint!)

As I also learned a long time ago, any science fiction piece that deals with the distant future has to take into account how human beings in the future go about organizing themselves. In this future world, what are the political blocs, the alliances, the rivalries – the ways in which people are united and divided? Well, I gave that a lot of thought before sitting down to pen the book (which is into chapter 11 now). And this is the basic breakdown I came up with.

Extro Factions:
For starters, people in the future I am envisioning are tentatively divided into those that live in the inner and outer Solar Systems. But that geographic divide is merely representative of a much bigger issue that divides humanity. Whereas the people living on Earth, Mars and Venus largely fall into the category of “Extro” (i.e. Extropian, people who embrace the transhuman ethic) people in the outer Solar System live simpler, less augmented and enhanced lives (“Retro”).

But within this crude division between people who believe in going beyond their biological limitations and those who believe in respecting them, there are plenty of different social, political and ideological groups to be found. Here’s a rundown on them, starting with the Extro factions…

The Formists:
Founded by Piter Chandrasekhar, one of the first colonists of Mars, the Formists are a faction dedicated to the full-scale terraforming of the Red Planet. The purpose of this, obviously, is to allow for full-scale colonization, which is something that remains impossible at this point in the story. All inhabitants on Mars lived in sealed domes, all transit takes place in pressurized tubes or on flyers, and anyone venturing out onto the surface is forced to wear a pressure suit with life-support systems.

Mars_terraforming
Mars Terraformed by Daein Ballard

Currently, the Formist faction is run by Emile Chandrasekhar, Piter’s grandson. And for the past few decades, they have been busy procuring resources from the outer Solar System to aid in the terraforming process. This includes supplies of methane, ammonia, ices, and lots and lots of comets.

However, they are also busy trying to ensure that the process will have a minimal impact on the settlements and those living within them. Altering the planet’s atmosphere will definitely have a significant impact on the landscape in the short-term, such as sublimating all the water ice in the Martian soil and in the polar caps. Once that water begins to flow, much of the surface will find itself being swallowed up by newly-created oceans. So naturally, the Formists must proceed slowly, and make sure all settlements on Mars agree to their plans.

While the Formist faction is largely centered on Mars, they have counterparts on Venus as well – known as The Graces (after the children of Aphrodite). Here, the process is significantly different, and involves converting the existing atmosphere rather than increasing its density. But the goal is the same: to one day make Venus a living, breathing world human beings can set foot on.

The Dysonists:
Among the Extros, there are also those who believe humanity’s future lies not in the stars or in the terraforming the Solar System’s planets, but in the space that surrounds our Sun. They are known as the Dysonists, a faction that is intent on building a massive swarm of structures in the inner Solar System. For some, this calls for a series of rings which house the inhabitants on their inner surface and provide gravity through endless rotation.

fractal_dyson_sphere_by_eburacum45-d2yum16
This artist’s concept of a Dyson sphere is via SentientDevelopments.com

For other, more ambitious Dysonists, the plan involves massive swarms of computronium that will contain a sea of uploaded personalities living in simulated environments. Both the swarms and the powerful bandwidth that connects them will draw energy from the Sun’s rays. These individuals consider themselves to be the more puritan of Dysonists, and believe those who advocate buildings rings structures are more properly known as Nivenists.

The process of converting all the “dumb matter” in the Solar System into smart matter has already begun, but in limited form. Within a few generations, it is believed that the Sun will be surrounded by a “Torus” of uploaded minds that will live on while countless generations come and go. Dysonists and their enclaves can be found on Near-Earth Asteroids, in the Main Asteroid Belt, and with committed supporters living on Venus, Mars, Earth, the Moon, and Ceres.

The Habitationists:
Inspired by Gerard K. O’Neill, the inventor of the O’Neill Cylinder, the Habitationists began as an architects dream that quickly expanded to fill all of known space. In the 21st century, Earthers looking to escape the growing population crisis began migrating to space. But rather than looking to live on distant worlds or the Moon, where the environment was harsh and the gravity limited, they decided to set up shop in orbit. Here, supplies could be shipped regularly, thanks to the advent of commercial aerospace, and gravity could be simulated at a full g thanks to rotating toruses.

By the mid 22nd century, Low Earth Orbit (LEO) Habs had become all the rage and the skies became somewhat saturated. The existence of Earth’s space elevator (The Spindle) only made deploying and supplying these Habs easier, and a steady drop in the costs of manufacturing and deploying them only made them more popular. As such, Terran architect Hassan Sarawak, who had designed many of the original habitats in space, began to busy himself designing a new series of Habs that would allow human beings to live in space anywhere in the Solar System.

Lightfarm Studios
Artistic impression of the inside of an O’Neil Cylinder. Lightfarm Studios

By the end of the 22nd century, when the story takes place, large cylinders exist in several key places in the Solar System. Most are named in honor of either their founders, those who articulated the concept of space habitats, or those who believed in the dream of colonizing space itself (and not just other planets and moons).  These places are thusly named O’Neil’s Reach, Clarkestown, Sawarakand, and New Standford.

The Seedlings:
As the name would suggest, the Seedlings are those intrepid Extropians who believe humanity should “seed” the galaxy with humanity, spreading to all solar systems that have confirmed exoplanets and building settlements there. But in a slight twist, they believe that this process should be done using the latest in nanotechnology and space penetrators, not slow interstellar ships ferrying human colonist and terraformers.

To the Seedlings, who can be found throughout the inner Solar System, and on some of its most distant moons, the idea is simple. Load up a tiny projectile-ship with billions of nanobots designed to slowly convert a planet’s climate, then fire it on a trajectory that will take it to an exoplanet many generations from now. Then, prepare a ship with colonists, send it on its merry way into space, and by the time they reach the distant world, it will be fully prepared for their arrival.

utility_fog
At this point in the story, the Seedlings first few missions are still in the planning stages. They’ve got the technology, they’ve got the know-how, and they know where the right candidate planets are located. All they need to do know is test out their machines and make sure the process works, so that they won’t be sending their colonists into a deathtrap.

Sidenote: this idea is actually one I explored in a short story I am trying to get published. If all goes well, I am the short story and this full-length idea can be connected as part of a singular narrative.

Retro Factions:
And now we come to the people who live predominantly in the outer Solar System, the folks who found life on Earth and the inner worlds unlivable thanks to its breakneck pace and the fact that life was becoming far too complicated. These are the people whom – for religious, personal, or moral reasons – chose to live on the frontier worlds in order to ensure something other than humanity’s survival as a species. For these people, it was about preserving humanity’s soul.

Organics:
In the mid to late 21st century, as biotech and cybernetics became an increasingly prevalent part of society, a divide began to emerge between people who enhanced their biology and neurology and those who did not. While the former were in the minority for the first few decades, by the latter half of the 21st century, more and more people began to become, in essence, “transhuman” – (i.e. more than human).

Cyber_Girl
Cyber Girl by Fausto De Martini

At the same time, fears and concerns began to emerge that humanity was forsaking the very things that made it human. With lives becoming artificially prolonged, human parts being swapped for bionic or biomimetic implants, and brains becoming enhanced with neural implants and “looms”, humanity seemed on course to becoming post-human (i.e. not human at all).

And while the concerns were justified, few who could afford such enhancements seemed to be willing to forsake the convenience and necessity they represented. In a world where they conferred advantage over the unenhanced, choosing not to augment one’s body and mind seemed foolish. But between those who could not afford to, those who were forbidden to, and those who chose not to, eventually a new underclass emerged – known as “Organics”.

Today’s organics, who live predominantly in the outer Solar System or isolated pockets in the inner worlds, are the descendants of these people. They live a simpler life, eschewing most of the current technology in favor for a more holistic existence, depending on various levels of technology to maintain a certain balance.

Fundies:
Naturally, human beings in the late 22nd century still have their faiths and creeds.  Despite what some said in previous centuries, mankind did not outgrow the need for religion as it began to explore space and colonizing new worlds. And when the Singularity took place in the mid 21st century, and life became increasingly complex, enhanced, and technologically-dominated, the world’s religiously-devout began to feel paradoxical. On the one hand, religion seemed to be getting more unpopular and obsolete; but at the same time, more rare and precious.

The-Common-Foundations-of-Religions-and-Theology-Evolutionary-Tree-of-Religions
To be fair, there was a time when it seemed as though the prediction of a religion-less humanity might come true. In the early to mid 21st century, organized religion was in a noticeable state of decline. Religious institutions found it harder and harder to adapt to the times, and the world’s devout appeared to be getting increasingly radicalized. However, in and around all of these observable trends, there were countless people who clung to their faith and their humanity because they feared where the future was taking them.

In the current era, the outer Solar System has become a haven for many sects and religious organizations that felt the Inner Worlds were too intolerant of their beliefs. While there will always be people who embrace one sort of faith or another on all worlds – for instance, billions of Extros identify as Gnosi or Monist – the majority of devout Kristos, Sindhus, Mahavadans, Mahomets, and Judahs now call the worlds of Ganymede, Callisto, Europa, Titan, Rhea, Iapetus, Dione, Tethys, Titania, Oberon, Ariel and Umbriel home.

The vast majority of these people want to live in peace. But for some, the encroachment of the Inner Worlds into the life and economies of their moons is something that must be stopped. They believe, as many do, that sooner or later, the Extro factions will try to overtake these worlds as well, and that they will either be forced to move farther out, colonizing the moons of Neptune and the Kuiper Belt, or find homes in new star systems entirely. As such, some are joining causes that are dedicated to pushing back against this intrusion…

Chauvians (Independents):
Many in the past also thought that nationalism, that sense of pride that is as divisive as it is unifying, would also have disappeared by this point in time. And while humanity did begin to celebrate a newfound sense of unity by the late 21st century, the colonizing of new worlds had the effect of creating new identities that were bound to a specific space and place. And given the divisive political climate that exists in the late 22nd century, it was only natural that many people in the Outer Worlds began preaching a form of independent nationalism in the hopes of rallying their people.

Révolution_de_1830_-_Combat_devant_l'hôtel_de_ville_-_28.07.1830
Collectively, such people are known as “Chauvians“, a slight bastardization of the word “Jovian” (which applies to inhabitants of any of the outer Solar System’s moons). But to others, they are known simply as Independents, people striving to ensure their worlds remain free of external control. And to those belonging to these factions, their worlds and their people are endangered and something must be done to stop the intrusion of Extros into the outer Solar System. For the most part, their methods are passive, informative, and strictly political. But for others, extra-legal means, even violent means, are seen as necessary.

Examples include the Children of Jove and the Aquilan Front, which are native to the Galilean moons of Jupiter. On the Cronian moons, the Centimanes are the main front agitating for action against the Extros. And on the Uranian moons, the organizations known as The Furies and the Sky Children are the forces to be reckoned with. Whereas the more-moderate of these factions are suspected of being behind numerous protests, riots, and organized strikes, the radicals are believed to be behind the disappearance of several Extro citizens who went missing in the Outer Worlds. In time, it is believed that a confrontation will occur between these groups and the local authorities, with everyone else being caught in the middle.


And those are the relevant players in this story I’m working out. Hope you like them, because a few come into play in the first story and the rest I think could become central to the plots of any future works in the same universe. Let me know what you think! 🙂

 

New Idea: The Cronian Incident

terraform_MarsA friend and mentor once told me that you shouldn’t be too worried about people stealing your ideas. To paraphrase what he said, you’ll have thousands of ideas, and no one can steal your work unless you’re careless. Those words rung true to me, mainly because I have far too many ideas, and not nearly enough of them are developed. Case in point, I’ve got four projects in the works, and none of them are near to completion.

And yet, I find myself once again adding an idea to the mix. It came to me over the course of the last few months while working for Universe Today and trying to refine my ideas on science fiction. Basically, I have been thinking for some time that any piece written by me should focus on the paradoxical issues of Climate Change and technological change, and how these will play out to shape our near, not-too-distant, and distant future.

And then an idea started forming. I would have filed it in the “not now, maybe later” column, but I think it might be something that could really work. And given the way I’ve been bugging people constantly over the past few months with it, asking their opinions, soliciting thoughts on the first few chapters, I clearly have become emotionally invested in it. So I thought perhaps it was time to commit to it, as I always do, by sharing the idea, and thus ensuring that there’s a record of it somewhere so no one can steal it! 😉

Jupiter-and-Io2
The Cronian Incident:
It is the late 22nd century, and humanity has grown to colonize almost every corner of the Solar System. Earth is now recovering from the worst aspects of “The Anthropocene”. Temperatures are dropping, species extinctions have stopped and are being reversed, and the population is stable, with over 13 billion people living in its cities, arcologies, and orbital habs. Over 1 million people live on the Moon, in cities built in lava tubes beneath the surface.

Mars and Venus are also home to humanity. On Mars, the Martian people live in domes that crisscross the surface, a Space Elevator brings people to and from the planet, and a constant flow of shipping to and from the Asteroid Belt and Solar System keeps the place busy. On Venus, the Cythereans live in cities that float atop the planet’s extremely dense atmosphere, harnessing carbon from the clouds to create graphene and diamond-based materials.

On all these worlds, humanity exists as a series of factions that know no national boundaries, and are collectively referred to as “Extros” – short for Extoprian. Thanks to over a century of runaway technological progress, diseases and disabilities have been eliminated, implants and embedded machinery allow for constant connectivity to the Nexus (future version of the Internet), and all vestiges of life are assisted by sentient programs and algorithms of various complexity.

space_elevator2
Meanwhile, the Outer Solar System hosts an entirely different mix of people. On the moons of Jupiter (the Jovians), Saturn (the Cronians), and Uranus (the Uranians), people enjoy a simpler existence. While they have access to plenty of advanced technology, many types of nanotech, biotech, and embeddadles are eschewed in favor of organic living, portable machines, and non-sentient computing.

Despite the fact that the Jovians, Cronians and Uranians are made up of countless peoples and factions, collectively, they are often referred to as “Retros” – a pejorative used to refer to their regressive lifestyle. But whether it is for religious reasons, personal reasons, or because they fear that Earth and the Inner Colonies have become consumed by runaway change and progress, the people who call these moons home prefer to maintain a balance.

Whereas these colonies were established in the latter half of the 21st century to ensure that humanity would have backup locations in case Earth died one day, by the 22nd century, they became dedicated to the preservation of something else. In this day in age, it is no longer about ensuring humanity’s physical survival, but rather preserving its spirit or a certain way of life.

Callisto_baseThe Plot:
Enter into this universe Jeremiah Ward, a disgraced former-detective who developed a drug problem as a result of his stressful work and the pace of life in the Inner Colonies. After an incident where two witnesses were murdered – which was attributed to negligence on his part – he is given a hefty prison sentence, which he decided to serve out in a penal colony on Mercury.

On this planet, where the day-side is hellish and unlivable, and the night-side is freezing and unlivable, mining crews live in the northern crater known as Prokofiev. Given the planet’s slow rotation (which takes 58 days to rotate once on its axis), mining crews go out to the night-side, spend days harvesting ore, and then transport it back to Prokofiev, where it then processed and fired off into space.

After a few years of this miserable existence, Ward is approached by a faction from Mars. Known as the Formists, this well-connected and powerful faction has a very strong standing on Mars. And they have a problem. One of their prospectors, who was traveling to the Outer Colonies to investigate their resource extraction operations, has gone missing. Worse yet, this prospector apparently had “sensitive materials” on his person that the Formists don’t want falling into the wrong hands.

titan_surface
These materials, they claim, detail a plan to convert Mars into a livable environment over the next few generations. Consistent with the Formists long term plan to terraform Mars into a new Earth, they are hoping to expand their contracts with the Outer Colonies for the vast amounts of resources they will need to do so. If these plans are made public, they worry that one of the rival factions – the Dysonists, the Habitationists, Settlers or Seedlings – will try to take advantage.

In exchange for finding their colleague and obtaining this information, Ward will have his sentence reduced to time served. He is told that his experience as an investigator makes him well-suited to the task, as well as the contacts he made in the Outer Colonies during his many years of service. But of course, he knows the real reason why he was selected: as a convict, he will be well-motivated to get the job done, and will be less likely to ask questions.

His journey takes him from Mars, to Jupiter’s moons of Ganymede and Callisto, and eventually to Titan – Saturn’s largest moon and the last stop of the prospector before he disappeared. When he finally comes to the end of his investigation, what he finds is far more than he bargained for. Rather than simply being a case of kidnapping or a hate-crime perpetrated by angry Retros, the prospector’s disappearance is part of a conspiracy that goes right to the heart of the Formist’s agenda.

alien-world
More than that, it goes right to the heart of an ongoing struggle, one which humanity has been preoccupied with for over a century. For in the end, the issue of humanity’s long-term survival has not been settled. And the solution to this problem just might mean sacrificing the few to save the many. In the end, Ward will be faced with a terrible decision: expose the agenda and spend the rest of his life on the run, or complete his mission and let things fall where they may?

***Of course, I can’t say what the big “conspiracy” is, for that would be spoilers galore! But suffice it to say, I have that worked out and its where the story gets particularly detailed, and brings up a lot of the intricacies of terraforming and space colonization.***

So that’s the idea. How does it sound? I’m five chapters in and quite hopeful that it will turn out to be something “magnum opus-y”.

The Fate of Humanity

the-futureWelcome to the world of tomorroooooow! Or more precisely, to many possible scenarios that humanity could face as it steps into the future. Perhaps it’s been all this talk of late about the future of humanity, how space exploration and colonization may be the only way to ensure our survival. Or it could be I’m just recalling what a friend of mine – Chris A. Jackson – wrote with his “Flash in the Pan” piece – a short that consequently inspired me to write the novel Source.

Either way, I’ve been thinking about the likely future scenarios and thought I should include it alongside the Timeline of the Future. After all, once cannot predict the course of the future as much as predict possible outcomes and paths, and trust that the one they believe in the most will come true. So, borrowing from the same format Chris used, here are a few potential fates, listed from worst to best – or least to most advanced.

1. Humanrien:
extinctionDue to the runaway effects of Climate Change during the 21st/22nd centuries, the Earth is now a desolate shadow of its once-great self. Humanity is non-existent, as are many other species of mammals, avians, reptiles, and insects. And it is predicted that the process will continue into the foreseeable future, until such time as the atmosphere becomes a poisoned, sulfuric vapor and the ground nothing more than windswept ashes and molten metal.

One thing is clear though: the Earth will never recover, and humanity’s failure to seed other planets with life and maintain a sustainable existence on Earth has led to its extinction. The universe shrugs and carries on…

2. Post-Apocalyptic:
post-apocalypticWhether it is due to nuclear war, a bio-engineered plague, or some kind of “nanocaust”, civilization as we know it has come to an end. All major cities lie in ruin and are populated only marauders and street gangs, the more peaceful-minded people having fled to the countryside long ago. In scattered locations along major rivers, coastlines, or within small pockets of land, tiny communities have formed and eke out an existence from the surrounding countryside.

At this point, it is unclear if humanity will recover or remain at the level of a pre-industrial civilization forever. One thing seems clear, that humanity will not go extinct just yet. With so many pockets spread across the entire planet, no single fate could claim all of them anytime soon. At least, one can hope that it won’t.

3. Dog Days:
arcology_lillypadThe world continues to endure recession as resource shortages, high food prices, and diminishing space for real estate continue to plague the global economy. Fuel prices remain high, and opposition to new drilling and oil and natural gas extraction are being blamed. Add to that the crushing burdens of displacement and flooding that is costing governments billions of dollars a year, and you have life as we know it.

The smart money appears to be in offshore real-estate, where Lillypad cities and Arcologies are being built along the coastlines of the world. Already, habitats have been built in Boston, New York, New Orleans, Tokyo, Shanghai, Hong Kong and the south of France, and more are expected in the coming years. These are the most promising solution of what to do about the constant flooding and damage being caused by rising tides and increased coastal storms.

In these largely self-contained cities, those who can afford space intend to wait out the worst. It is expected that by the mid-point of the 22nd century, virtually all major ocean-front cities will be abandoned and those that sit on major waterways will be protected by huge levies. Farmland will also be virtually non-existent except within the Polar Belts, which means the people living in the most populous regions of the world will either have to migrate or die.

No one knows how the world’s 9 billion will endure in that time, but for the roughly 100 million living at sea, it’s not a going concern.

4. Technological Plateau:
computer_chip4Computers have reached a threshold of speed and processing power. Despite the discovery of graphene, the use of optical components, and the development of quantum computing/internet principles, it now seems that machines are as smart as they will ever be. That is to say, they are only slightly more intelligent than humans, and still can’t seem to beat the Turing Test with any consistency.

It seems the long awaited-for explosion in learning and intelligence predicted by Von Neumann, Kurzweil and Vinge seems to have fallen flat. That being said, life is getting better. With all the advances turned towards finding solutions to humanity’s problems, alternative energy, medicine, cybernetics and space exploration are still growing apace; just not as fast or awesomely as people in the previous century had hoped.

Missions to Mars have been mounted, but a colony on that world is still a long ways away. A settlement on the Moon has been built, but mainly to monitor the research and solar energy concerns that exist there. And the problem of global food shortages and CO2 emissions is steadily declining. It seems that the words “sane planning, sensible tomorrow” have come to characterize humanity’s existence. Which is good… not great, but good.

Humanity’s greatest expectations may have yielded some disappointment, but everyone agrees that things could have been a hell of a lot worse!

5. The Green Revolution:
MarsGreenhouse2The global population has reached 10 billion. But the good news is, its been that way for several decades. Thanks to smart housing, hydroponics and urban farms, hunger and malnutrition have been eliminated. The needs of the Earth’s people are also being met by a combination of wind, solar, tidal, geothermal and fusion power. And though space is not exactly at a premium, there is little want for housing anymore.

Additive manufacturing, biomanufacturing and nanomanufacturing have all led to an explosion in how public spaces are built and administered. Though it has led to the elimination of human construction and skilled labor, the process is much safer, cleaner, efficient, and has ensured that anything built within the past half-century is harmonious with the surrounding environment.

This explosion is geological engineering is due in part to settlement efforts on Mars and the terraforming of Venus. Building a liveable environment on one and transforming the acidic atmosphere on the other have helped humanity to test key technologies and processes used to end global warming and rehabilitate the seas and soil here on Earth. Over 100,000 people now call themselves “Martian”, and an additional 10,000 Venusians are expected before long.

Colonization is an especially attractive prospect for those who feel that Earth is too crowded, too conservative, and lacking in personal space…

6. Intrepid Explorers:
spacex-icarus-670Humanity has successfully colonized Mars, Venus, and is busy settling the many moons of the outer Solar System. Current population statistics indicate that over 50 billion people now live on a dozen worlds, and many are feeling the itch for adventure. With deep-space exploration now practical, thanks to the development of the Alcubierre Warp Drive, many missions have been mounted to explore and colonizing neighboring star systems.

These include Earth’s immediate neighbor, Alpha Centauri, but also the viable star systems of Tau Ceti, Kapteyn, Gliese 581, Kepler 62, HD 85512, and many more. With so many Earth-like, potentially habitable planets in the near-universe and now within our reach, nothing seems to stand between us and the dream of an interstellar human race. Mission to find extra-terrestrial intelligence are even being plotted.

This is one prospect humanity both anticipates and fears. While it is clear that no sentient life exists within the local group of star systems, our exploration of the cosmos has just begun. And if our ongoing scientific surveys have proven anything, it is that the conditions for life exist within many star systems and on many worlds. No telling when we might find one that has produced life of comparable complexity to our own, but time will tell.

One can only imagine what they will look like. One can only imagine if they are more or less advanced than us. And most importantly, one can only hope that they will be friendly…

7. Post-Humanity:
artificial-intelligence1Cybernetics, biotechnology, and nanotechnology have led to an era of enhancement where virtually every human being has evolved beyond its biological limitations. Advanced medicine, digital sentience and cryonics have prolonged life indefinitely, and when someone is facing death, they can preserve their neural patterns or their brain for all time by simply uploading or placing it into stasis.

Both of these options have made deep-space exploration a reality. Preserved human beings launch themselves towards expoplanets, while the neural uploads of explorers spend decades or even centuries traveling between solar systems aboard tiny spaceships. Space penetrators are fired in all directions to telexplore the most distant worlds, with the information being beamed back to Earth via quantum communications.

It is an age of posts – post-scarcity, post-mortality, and post-humansim. Despite the existence of two billion organics who have minimal enhancement, there appears to be no stopping the trend. And with the breakneck pace at which life moves around them, it is expected that the unenhanced – “organics” as they are often known – will migrate outward to Europa, Ganymede, Titan, Oberon, and the many space habitats that dot the outer Solar System.

Presumably, they will mount their own space exploration in the coming decades to find new homes abroad in interstellar space, where their kind can expect not to be swept aside by the unstoppable tide of progress.

8. Star Children:
nanomachineryEarth is no more. The Sun is now a mottled, of its old self. Surrounding by many layers of computronium, our parent star has gone from being the source of all light and energy in our solar system to the energy source that powers the giant Dyson Swarm at the center of our universe. Within this giant Matrioshka Brain, trillions of human minds live out an existence as quantum-state neural patterns, living indefinitely in simulated realities.

Within the outer Solar System and beyond lie billions more, enhanced trans and post-humans who have opted for an “Earthly” existence amongst the planets and stars. However, life seems somewhat limited out in those parts, very rustic compared to the infinite bandwidth and computational power of inner Solar System. And with this strange dichotomy upon them, the human race suspects that it might have solved the Fermi Paradox.

If other sentient life can be expected to have followed a similar pattern of technological development as the human race, then surely they too have evolved to the point where the majority of their species lives in Dyson Swarms around their parent Sun. Venturing beyond holds little appeal, as it means moving away from the source of bandwidth and becoming isolated. Hopefully, enough of them are adventurous enough to meet humanity partway…

_____

Which will come true? Who’s to say? Whether its apocalyptic destruction or runaway technological evolution, cataclysmic change is expected and could very well threaten our existence. Personally, I’m hoping for something in the scenario 5 and/or 6 range. It would be nice to know that both humanity and the world it originated from will survive the coming centuries!

News from Space: New Horizons Passes Neptune

new-horizons-neptuneIt certainly has been a momentous few weeks for space exploration! Between the final weeks of August and the month of September, we’ve seen the Curiosity rover reach Mount Sharp, the Rosetta spacecraft created the first full map of a comet’s, the completion of the Orion space module, and the MAVEN orbiter reach Martian orbit. And before the month is out, India’s Mars Orbiter Mission (MOM) will also arrive in orbit around the Red Planet.

Despite all these developments, that occurred (relatively) close to home, there was even more news to be had, coming all the way from the edge of the Solar System no less. At the tail end of August, NASA announced that the New Horizons space probe passed Neptune orbit and is on its way to Pluto. Launched back in 2006 for the purpose of studying the dwarf planet, the probe is expected to arrive on July 14th of next year.

new-horizons-neptune-8NASA says that the the craft passed the Neptunian orbit at 10:04 pm EDT on Monday August 25th, which coincided with the 25th anniversary of Voyager 2’s flyby of Neptune in 1989. But where Voyager came within 4,950 km (3,080 mi) of the gas giant, the New Horizons craft passed by at a distance of 3.96 billion km (2.45 billion mi). The spacecraft is now almost 4.42 billion km (2.75 billion mi) from Earth, and is the fastest man-made object ever sent into space.

Nevertheless, New Horizons’ Long Range Reconnaissance Imager (LORRI) was still able to capture images of Neptune and its giant moon Triton. As you can see from the image below, Neptune appears as the large white disc in the middle, while Triton is the small black dot passing in front and sitting slightly to the ride. NASA says that Triton may be very similar to Pluto and the information gathered by Voyager 2 may prove helpful in the coming encounter.

new_horizons_plutoRalph McNutt of the Johns Hopkins University Applied Physics Laboratory.

There is a lot of speculation over whether Pluto will look like Triton, and how well they’ll match up. That’s the great thing about first-time encounters like this – we don’t know exactly what we’ll see, but we know from decades of experience in first-time exploration of new planets that we will be very surprised.

The first mission in NASA’s New Frontiers program, the New Horizons mission was launched on January 19, 2006 atop an Atlas V rocket from Cape Canaveral, Florida. It broke the record for the fastest man-made object on lift off with a speed of 58,536 km/h (36,373 mph). The 478 kg (1,054 lb) spacecraft was sent on a 9.5-year mission to fly by Pluto – a distance so far that radio signals from the nuclear-powered probe take four hours to reach Earth.

new-horizons-neptune-7Sent on a slingshot trajectory using the gravitational pull of Jupiter, which tacked on another 14,480 km/h (9,000 mph) to its speed, New Horizons will pass Pluto in July of next year at a distance of 13,000 km (8,000 mi). After this encounter, it will continue on out of the Solar System, during which it will be in the distant Kuiper belt studying one or more Kuiper belt objects (KBOs).

Though this will still not rival Voyager 1’s accomplishments, which left our Solar System last year, New Horizons promises to gather far more information on the Outer Solar System and what lies beyond. All of this will come in mighty handy when at last, humanity contemplates sending manned missions into deep space, either to Alpha Centauri or neighboring exoplanets.

Sources: gizmag.com, nasa.gov

News from Mars: MAVEN Orbiter Arrives!

maven_tv_backdropIn November 2013, NASA launched the Mars Atmosphere and Volatile Evolution (MAVEN) space probe from Cape Canaveral. Described as a “time machine” for Mars, the orbiter would spend the next ten months traversing space, assuming an orbit around the Red Planet, and look for an answer as to how Mars went from being a planet with an atmosphere and water to the dried out husk that we know today.

And this evening, after trekking some 711 million kilometers (442 million-mile) across our Solar System, MAVEN will have arrived in orbit around Mars and will begin its year-long mission to study the planet’s upper atmosphere. The arrival will be broadcast live, courtesy of NASA TV and Space.com. The live webcast will run from 9:30 p.m. to 10:45 p.m. EDT (0130 to 0245 GMT), and if all goes well, MAVEN will enter orbit around Mars at 9:50 p.m. EDT (0250 GMT).

maven_launchAs David Mitchell, NASA’s MAVEN project manager at the Goddard Space Flight Center in Greenbelt, Maryland, said in a statement:

So far, so good with the performance of the spacecraft and payloads on the cruise to Mars. The team, the flight system, and all ground assets are ready for Mars orbit insertion.

Though plans to study Mars’ atmosphere in detail have been in the works for years, the MAVEN program received a big push from the ongoing efforts from the Curiosity rover. During its ongoing mission to study the surface of Mars, Curiosity was able to confirm that Mars had extensive surface water billions of years ago. This revelation came very early in the mission, and indicated some rather interesting things about Mars’ past.

Mars-snow-header-640x353For instance, although Mars is now too cold for flowing water today, it might have had a thicker atmosphere in the past that warmed its surface and allowed the liquid to remain stable on the surface. And while scientists have a pretty good idea how it was lost (i.e. too far our Sun, too low a gravity field), the rate of loss and when it disappeared are just some of the questions that MAVEN will attempt to answer.

Much of what scientists know about Mars’ upper atmosphere comes from just a few minutes’ worth of data from the two Viking landers that took measurements as they made their way to the Martian surface in the 1970s. This time around, NASA will be able to collect data for an entire year, gathering far more data than either the Viking landers or any other spacecraft has since had the opportunity to do.

maven_atmo1As Bruce Jakosky, the mission’s principal investigator at the University of Colorado, Boulder’s Laboratory for Atmospheric and Space Physics, explained it:

The MAVEN science mission focuses on answering questions about where did the water that was present on early Mars go, about where did the carbon dioxide go. These are important questions for understanding the history of Mars, its climate, and its potential to support at least microbial life.

NASA scientists understand that Mars’ upper atmosphere acts as an escape zone for molecules floating dozens of miles from the planet’s surface. They theorize that as the solar wind hits the atmosphere, the radiation strips away the lighter molecules and flings them into space forever. To test this hypothesis, MAVEN will be examining the state of Mars’ upper atmosphere, and ionosphere to determine its interactions with the solar wind.

maven_atmosphereIn so doing, NASA hopes to determine what the current rates of escape are for neutral gases and ions, and thus get a better picture of how long it took for the atmosphere to degrade and when it began degrading. The upper atmosphere of Mars likely changes as the sun’s activity increases and decreases, which is why MAVEN investigators hope to run the mission for longer than a year.

MAVEN will began making science measurements around Nov. 8, due to it taking a short break from its commissioning phase to watch Comet Siding Spring pass close by on Oct. 19. The $671 million MAVEN spacecraft is one of two missions that launched toward Mars last November and which are making their arrival this month. The other probe is India’s Mars Orbiter Mission, which launched just before MAVEN and will arrive at the Red Planet this Wednesday (Sept. 24).

It is an exciting time for space exploration, and the coming years are sure to be characterized by an escalating and accelerating rate of learning. Be sure to head on over to Space.com to watch the arrival broadcast live. And be sure to check out the following videos – the Mars Arrival trailer; NASA Goddard Center’s “Targeting Mars” video; and the NASA MAVEN PSA, hosted by LeVar Burton:

MAVEN Mars Arrival Trailer:


Targeting Mars:


LeVar Burton Shares MAVEN’s Story:


Sources:
space.com, (2), nasa.gov