News from Space: “Life” Molecules Detected in Space!

SagitariusB2The secret to the creation to life in our universe appears to be seeding – the proper elements in the right mix in the right places to form the right kind of molecules. Only then can these molecules evolve chemically into more and more complex structures, thus following a general pathway toward biology. The pathway for life as we know it starts with carbon, but one which is specific organized and structured.

Recently, a team of astronomers  at the ALMA Observatory reported the discovery of this very element while probing distant galaxies. What they found was not just interstellar carbon, but a form of carbon with a branched structure. The discovery was made in the gaseous-star forming region known as Sagittarius B2 – a giant molecular cloud of gas and dust that is located about 390 light years from the center of the Milky Way.

radio-wave-dishesSimple carbon chains aren’t particularly unusual in the cosmos, but complex carbon is a different matter. It is what the researchers, based at Cornell University and the Max Planck Institute, describe as finding a molecular needle in a cosmic haystack. The actual molecule in question is isopropyl cyanide, and it was discerned thanks to the miracle known as radio astronomy.

Within clouds of interstellar dust and gas, elements find themselves shielded from the harsh radiation of open space and are, thus, free to form into more complex arrangements. These molecules don’t just sit there, but instead move around within their cloud-homes and bump into each other. The result of this activity are radio signals which can be detected light-years away – in this case, by radio telescopes here on Earth.

MaxPlanckIns_radiowavepulseEvery molecule has a different radio signal, so it’s possible to pick apart the contents of interstellar junk by examining a cloud’s frequency spectra. NASA, via the Ames Research Center, even maintains a radio-emission frequency database to aid in the tracking of polycyclic aromatic hydrocarbons, a form of molecule thought to contain much of the universe’s carbon stockpiles.

The branching carbon structure of isopropyle cyanide is of particular interest because it’s thought that this arrangement is a step on the way to the production of amino acids, the building blocks of proteins, and hence organic life. The discovery gives weight to the increasingly popular notion that life, or at least many of the key steps leading toward life, actually occurs off-planet.

alien-worldLife on Earth may have been well on its way while the planet was still just space dust waiting to come together into our rock-home. What’s more, the molecules discovered by the ALMA team probably aren’t alone.  As the authors, led by astronomer Arnaud Belloche, wrote:

[Isopropyle cyanide’s] detection therefore bodes well for the presence in the [interstellar medium] (ISM) of amino acids, for which such side-chain structure is a key characteristic… This detection suggests that branched carbon-chain molecules may be generally abundant in the [interstellar medium].

The discovery follows a general progression in recent years adding more and more life-ingredients to our picture of the ISM. A 2011 study revealed that complex organic matter should be created in large volumes from stars, while a 2012 report study found that conditions within the ISM are uniquely suited to the creation of increasingly complex molecules, “step[s] along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively.”

sugar-in-space-molecules_58724_990x742Also in 2012, astronomers working for ALMA found basic sugar molecules hanging out in the gas cloud around IRAS 16293-2422 – a young star located some 400 light-years from Earth. The particular form, glycoaldehyde, is thought to be a key component of the reaction behind the creation of DNA. Indeed, more and more, the universe is looking less and less like a harsh environment in which life must struggle to emerge, to a life factory.


Universe Today: Are Intelligent Civilizations Doomed?

Gaia_galaxyMy friend over at Universe Today, Fraser Cain, has been busy of late! In his latest podcast, he asks an all-important question that addresses the worrisome questions arising out of the Fermi Paradox. For those unfamiliar with this, the paradox states that given the age of the universe, the sheer number of stars and planets, and the statistical likelihood of some of the supporting life, how has humanity failed to find any indications of intelligent life elsewhere?

It’s a good question, and raised some frightening possibilities. First off, humanity may be alone in the universe, which is frightening enough prospect given its sheer size. Nothing worse than being on a massive playground and knowing you only have but yourself to play with. A second possibility is that extra-terrestrial life does exist, but has taken great pains to avoid being contacting us. An insulting, if understandable, proposition.

alien-worldThird, it could be that humanity alone has achieved the level of technical development necessary to send out and receive radio transmissions or construct satellites. That too is troubling, since it would means that despite the age of the universe, it took this long for an technologically advanced species to emerge, and that there are no species out there that we can learn from or look up to.

The fourth, and arguably most frightening possibility, is the Great Filter theory – that all intelligent life is doomed to destroy itself, and we haven’t heard from any others because they are all dead. This concept has been explored by numerous science fiction authors – such as Stephen Baxter (Manifold: Space), Alastair Reynolds (the Revelation Space universe) and Charles Stross (Accelerand0) – all of whom employ a different variation and answer.

kardashev_scaleAs explored by these and other authors, the biggest suggestions are that either civilizations will eventually create weapons or some kind of programmed matter which will destroy – such as nuclear weapons, planet busters, killer robots, or nanotech that goes haywire (aka. “grey goo”). A second possibility is that all species eventually undergo a technological/existential singularity where they shed their bodies and live out their lives in a simulated existence.

A third is that intelligent civilizations fell into a “success trap”, outgrowing their resources and their capacity to support their numbers, or simply ruined their planetary environment before they could get out into the universe. As usual, Fraser gives a great rundown on all of this, explaining the Fermi Paradox is, the statistical likelihood of life existing elsewhere, and what likely scenarios could explain why humanity has yet to find any proof of other civilizations.

Are Intelligent Civilizations Doomed:

And be sure to check out the podcast that deals strictly with the Fermi Paradox, from roughly a year ago:

The Fermi Paradox Explained:

News From Space: Alpha Centauri’s “Superhabitable” World

alpha_centauri_newsScientists and astronomers have learned a great deal about the universe in recent years, thanks to craft like the Kepler space probe and the recently launched Gaian space observatory. As these and other instruments look out into the universe and uncover stars and exoplanets, it not only lets us expand our knowledge of the universe, but gives us a chance to reflect upon the meaning of this thing we call “habitability”.

Basically, our notions of what constitutes a habitable environment are shaped by our own. Since Earth is a life-sustaining environment from which we originated, we tend to think that conditions on another life-giving planet would have to be similar. However, scientists René Heller and John Armstrong contend that there might be a planet even more suitable in this galaxy, and in the neighboring system of Alpha Centauri B.

alpha_centauriBb1For those unfamiliar, Alpha Centauri A/B is a triple star system some 4.3 light years away from Earth, making it the closest star system to Earth. The nice thing about having a hypothetical “superhabitable” planet in this system is that it makes it a lot easier to indulge in a bit of a thought experiment, and will make it that much more easy to observe and examine.

According to the arguments put forward by Heller, of the Department of Physics and Astronomy, McMaster University, Hamilton; and Armstrong, of the Department of Physics, Weber State University in Ogden, this planet may be even more suitable for supporting life than our own. It all comes down to meeting the particulars, and maybe even exceeding them.

habitable_sunsFor example, a habitable planet needs the right kind sun – one that has existed and remained stable for a long time. If the sun in question is too large, then it will have a very short life; and if it’s too small, it might last a long time. But the planet will have to be very close to stay warm and that can cause all sorts of problems, such as a tidally locked planet with one side constantly facing the sun.

Our own sun is a G2-type star, which means it has been alive and stable for roughly 4.6 billion years. However, K-type dwarfs, which are smaller than the Sun, have lives longer than the age of the universe. Alpha Centauri B is specifically a K1V-type star that fits the bill with an estimated age of between 4.85 and 8.9 billion years, and is already known to have an Earth-like planet called Alpha Centauri B b.

alpha_centauriBb2As to the superhabitable planet, assuming it exists, it will be located somewhere between 0.5 and 1.4 astronomical units (46 – 130 million mi, 75 – 209 million km) from Alpha Centauri B. All things being equal, it will have a circular orbit 1. 85 AU (276 million km / 172 million miles) away, which would place it in the middle of the star’s habitable zone.

Also, for a planet to sustain life it has to be geologically active, meaning it has to have a rotating molten core to generate a magnetic field to ward off cosmic radiation and protect the atmosphere from being stripped away by solar winds. A slightly more massive planet with more gravity means more tectonic activity, so a better magnetic field and a more stable climate.


PlutoHowever, the most striking difference between the superhabitable world and Earth would be that the former would lack our continents and deep oceans – both of which can be hostile to life. Instead, Heller and Armstrong see a world with less water than ours, which would help to avoid both a runaway greenhouse effect and a snowball planet that an overabundance of water can trigger.

Our superhabitable planet might not even be in the habitable zone. It could be a moon of some giant planet further away. Jupiter’s moon Io is a volcanic hellhole due to tidal heating, but a larger moon that Heller and Armstrong call a “Super Europa” in the right orbit around a gas giant could heat enough to support life even if it’s technically outside the star’s habitable zone.


alien-worldAccording to Heller and Armstrong, this world would look significantly different from our own. It would be an older world, larger and more rugged, and would provide more places for life to exist. What water there was would be evenly scattered across the surface in the form of lakes and small, shallow seas. And, it would also be slightly more massive, which would mean more gravity.

This way, the shallow waters would hold much larger populations of more diverse life than is found on Earth, while the temperatures would be more moderated. However, it would be a warmer world than Earth, which also makes for more diversity and potentially more oxygen, which the higher gravity would help with by allowing the planet to better retain its atmosphere.

panspermia1Another point made by Heller and Armstrong is that there may be more than one habitable planet in the Alpha Centauri B system. Cosmic bombardments early in the history of the Solar System is how the Earth got its water and minerals. If life had already emerged on one planet in the early history of the Alpha Centauri B system, then the bombardment might have spread it to other worlds.

But of course, this is all theoretical. Such a planet may or may not exist, and may or may not have triggered the emergence of life on other worlds within the system. But what is exciting about it is just how plausible its existence may prove to be, and how easy it will be to verify once we can get some space probes between here and there.

Just imagine the sheer awesomeness of being able to see it, the images of a super-sized Earth-moon beamed back across light years, letting us know that there is indeed life on worlds besides our own. Now imagine being able to study that life and learning that our conceptions of this too have been limited. What a time that will be! I hope we all live to see it…




Remembering the Shuttle Challenger Disaster

Challenger_explosionToday marks the 28th anniversary of the Shuttle Challenger Disaster, an incident which has lived on in the memories of people around the world and to many, signaled the end of an era. The shuttle’s explosion, which took place at 11:39:13 am EST on January 28th, 1986, occurred just 73 seconds into flight after it took off from Cape Canaveral on the Florida coast.

According to investigators, the accident occurred when the O-ring seal in the shuttle’s solid rocket booster failed during liftoff, which allowed pressurized hot gas from within the solid rocket motor to reach the outside. This malfunction led to the separation of the right-hand solid rocket booster’s aft attachment and the structural failure of the external tank.

Challenger_flight_51-l_crewThe fallen crew members included NASA astronauts Greg Jarvis, Ronald McNair, Ellison Onizuka, Judith Resnik, Michael J. Smith and Dick Scobee, as well as school teacher Christa McAuliffe. It was because of McAuliffe’s presence on the shuttle –  as the first member of the Teacher in Space Project – that roughly 17 percent of Americans were tuned to their TVs during the time of the accident and witnessed the tragedy.

The disaster resulted in a 32-month hiatus in the shuttle program and the formation of the Rogers Commission, a presidential commission charged with investigating the accident. It revealed, amongst other things, that NASA’s organizational culture was in part responsible for the disaster. In short, NASA managers had known that the O-Rings in the Solid Rocket Booster (SRB) design contained a fatal flaw, one which was overlooked.

???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????The investigation also revealed that engineers at Morton Thiokol, the manufacturer of the rocket boosters, had warned them prior to the launch of the flaw. One such engineer was Roger Boisjoly, who realized that a shuttle launch in the cold weather that Florida was experiencing would pose a grave danger. As he had indicated, the rockets weren’t designed to launch safely in weather below 40 degrees Fahrenheit.

NASA officials at the time rejected Boisjoly’s warning, saying that he was acting on a gut feeling rather than science. Boisjoly told The Times in an interview in 2003 that NASA tried to blacklist him from the industry, and  went so far as to argue that some NASA officials should be indicted for manslaughter charges, and the agency should be abolished.

Challenger_learning_centerThere are many memorials to the fallen crew, but one of the most cited in education is the 40 Challenger Learning Centers that are located in the United States, Canada, United Kingdom and South Korea. The network was founded by June Scobee Rogers (the widow of commander Scobee) and includes participation from other Challenger family members.

According to their website, their goal is to:

[G]ive students the chance to become astronauts and engineers and solve real-world problems as they share the thrill of discovery on missions through the Solar System.

As a result of the disaster, the Air Force decided to cancel its plans to use the Shuttle for classified military satellite launches from Vandenberg Air Force Base in California, deciding to use the Titan IV instead. Media coverage of the accident was also extensive, with one study indicating that 85 percent of Americans had heard the news within an hour of the accident.

astronaut_memorial_foundationChallenger’s anniversary comes in a week that includes other tragic anniversaries, including the Apollo 1 pad fire that occurred on Jan. 27th, 1967 and claimed the lives of three astronauts’ lives; the Columbia shuttle breakup that happened on Feb. 1st, 2003 and killed seven. Many other astronauts have died in training accidents, and their names are listed at the Astronaut Memorial Foundation.

The disaster has also been used as a case study in many discussions of engineering safety and workplace ethics. And it serves as a constant reminder of the bravery of those who choose to go into space for the sake of advancing science and our understanding of the cosmos. It’s also a reminder that the only safeguard against tragic accidents is eternal vigilance!

Let us all hope and pray no such incidents happen as we embark on a renewed age of space exploration and discovery!

Looking for Dark Matter: The DarkSide-50 Project

darkmatter1If 2013 will go down in history as the year the Higgs Boson was discovered, then 2014 may very well be known as the year dark matter was first detected. Much like the Higgs Boson, our understanding of the universe rests upon the definitive existence of this mysterious entity, which alongside “dark energy” is believed to make up the vast majority of the cosmos.

Before 2014 rolled around, the Large Underground Xenon experiment (LUX) – located near the town of Lead in South Dakota – was seen as the best candidate for finding it. However, since that time, attention has also been directed towards the DarkSide-50 Experiment located deep underground in the Gran Sasso mountain, the highest peak in the Appennines chain in central Italy.

darkside-50This project is an international collaboration between Italian, French, Polish, Ukrainian, Russian, and Chinese institutions, as well as 17 American universities, which aims to pin down dark matter particles. The project team spent last summer assembling their detector, a grocery bag-sized device that contains liquid argon, cooled to a temperature of -186° C (-302.8° F), where it is in a liquid state.

According to the researchers, the active, Teflon-coated part of the detector holds 50 kg (110 lb) of argon, which provides the 50 in the experiment’s name. Rows of photodetectors line the top and bottom of the device, while copper coils collect the stripped electrons to help determine the location of collisions between dark matter and visible matter.

darkside-50-0The research team, as well as many other scientists, believe that a particle known as a WIMP (weakly interacting massive particle) is the prime candidate for dark matter. WIMP particles have little interaction with their surroundings, so the researchers are hoping to catch one of these particles in the act of drifting aloof. They also believe that these particles can be detected when one of them collides with the nucleus of an atom, such as argon.

By cramming the chamber of their detector with argon atoms, the team increases their chance of seeing a collision. The recoil from these collisions can be seen in a short-lived trail of light, which can then be detected using the chamber’s photodetectors. To ensure that background events are not interfering, the facility is located deep underground to minimize background radiation.

darkmatterTo aid in filtering out background events even further, the detector sits within a steel sphere that is suspended on stilts and filled with 26,500 liters (7000 gallons) of a fluid called scintillator. This sphere in turn sits inside a three-story-high cylindrical tank filled with 946,350 liters (250,000) of ultrapure water. These different chambers help the researchers differentiate WIMP particles from neutrons and cosmic-ray muons.

Since autumn of 2013, the DarkSide-50 project has been active and busy collecting data. And it is one of about three dozen detectors in the world that is currently on the hunt for dark matter, which leads many physicists to believe that elusive dark matter particles will be discovered in the next decade. When that happens, scientists will finally be able to account for 31.7% of the universe’s mass, as opposed to the paltry 4.9% that is visible to us now.

planck-attnotated-580x372Now if we could only account for all the “dark energy” out there – which is believed to make up the other 68.3% of the universe’s mass – then we’d really be in business! And while we’re waiting, feel free to check out this documentary video about the DarkSide-50 Experiment and the hunt for dark matter, courtesy of Princeton University:


News From Space: Gaia Lifts Off!

gaia_liftoffThis morning, the European Space Agency’s Gaia mission blasted off from Europe’s Spaceport in Kourou, French Guiana, on the head of a Soyuz rocket. This space observatory aims to study approximately 1 billion stars, roughly 1% of the Milky Way Galaxy, and create the most accurate map yet of the Milky Way. In so doing, it will also answer questions about the origin and evolution of our home Galaxy.

As the successor to the Hipparcos mission – an ESA astrometry satellite that was launched in 1989 and operated until 1993 – it is part of ESA’s Horizon 2000 Plus long-term scientific program. Repeatedly scanning the sky, Gaia will observe each of the billion stars an average of 70 times each over the five years and measure the position and key physical properties of each star, including its brightness, temperature and chemical composition.

The Milky Way Shines on ParanalThe Soyuz VS06 launcher, operated by Arianespace, lifted off at 09:12 GMT (10:12 CET). About ten minutes later, after separation of the first three stages, the Fregat upper stage ignited, delivering Gaia into a temporary parking orbit at an altitude of 175 km. A second firing of the Fregat 11 minutes later took Gaia into its transfer orbit, followed by separation from the upper stage 42 minutes after liftoff.

Gaia is now en route towards an orbit around a gravitationally-stable virtual point in space called L2 Lagrange Point, some 1.5 million kilometres beyond Earth.  Tomorrow, engineers will command Gaia to perform the first of two critical thruster firings to ensure it is on the right trajectory towards its L2 home orbit. About 20 days after launch, the second critical burn will take place, inserting it into its operational orbit around L2.

Gaia_spacecraftJean-Jacques Dordain, ESA’s Director General, had this to say about the launch:

Gaia promises to build on the legacy of ESA’s first star-mapping mission, Hipparcos, launched in 1989, to reveal the history of the galaxy in which we live.

ESA’s Gaia project scientist Timo Prusti expressed similar sentiments, highlighting how the Gaia mission’s ultimate purpose is to advance our understanding of the cosmos:

Along with tens of thousands of other celestial and planetary objects, this vast treasure trove will give us a new view of our cosmic neighbourhood and its history, allowing us to explore the fundamental properties of our Solar System and the Milky Way, and our place in the wider Universe.

By taking advantage of the slight change in perspective that occurs as Gaia orbits the Sun during a year, it will measure the stars’ distances and their motions across the sky. This motions will later be put into “rewind” to learn more about where they came from and how the Milky Way was assembled over billions of years from the merging of smaller galaxies, and into “fast forward” to learn more about its ultimate fate.

Gaia_galaxyThis is an especially ambitious mission when you consider that of the one billion stars Gaia will observe, 99% have never had their distances measured accurately. The mission will also study 500,000 distant quasars and will conduct tests of Einstein’s General Theory of Relativity. So as the mission continues and more data comes in, scientists and astronomers will be able to construct more detailed models of how the universe was created, and perhaps how it will end…

The current consensus is that the universe began with a creation event known as The Big Bang. However, the question of how it will end, either through a “Big Crunch” event – where the expansion of the universe will eventually cease and all matter will collapse back in on itself – or simply continue to expand until all stars and galaxies consume their fuel and burn out, remains something of a mystery.

Gaia_spacecraft2Personally, I call Big Crunch, mainly because I like to the think that our universe is one of many. Not just in the parallel dimension sense, but in the temporal sense as well. Like the city of Ilium (aka. Troy), existence as we know it is built upon the foundations of countless others, stretching backwards and forwards into infinity…

Deep stuff, man! In the meantime, enjoy this video of the Gaia’s mission’s liftoff, courtesy of the ESA:


Alien Spotting by 2020?

alien-worldWith recent observations made possible by the Kepler space telescope, numerous planets have been discovered orbiting distant stars. Whereas previous observations and techniques could detect exoplanets, scientists are now able to observe and classify them, with the ultimate aim of determining how Earth-like they are and whether or not they can support life.

Combined with advanced astronomical techniques, the latest estimates claim that there may be are up to 50 sextillion potentially habitable planets in the universe. With their eyes on the next step, the scientific community is now preparing to launch a bevy of new space telescopes that can peer across the universe and tell us how many of those planets actually harbor life.

TESSOne such telescope is NASA’s Transiting Exoplanet Survey Satellite (TESS), which will launch in 2017. While Kepler was focused on a single patch of sky with around 145,000 stars, TESS will be equipped with four telescopes that keep track of around 500,000 stars, including the 1,000 nearest red dwarfs. TESS is expected to find thousands of orbiting, Earth-sized-or-larger planets around these stars.

But to find out whether or not any of those planets actually house life, another sophisticated telescope needs to be employed – the James Webb Space Telescope.Whereas TESS is Kepler’s successor, the James Webb Space Telescope – a joint NASA/ESA/CSA venture – is the planned successor for the Hubble Telescope and is due to launch in 2018.

TESS_Space_Telescope_Mirror37-640x425The JWST has a primary mirror that’s about five times larger than Hubble’s (pictured above), which means it can resolve much fainter signals, locating stars and other objects that have never been seen before. Because it primarily operates in the infrared band (whereas Hubble was tuned towards visible light), the JWST will also be able to see through dust clouds into hidden areas of space.

The JWST’s scientific payload includes a spectrometer that’s sensitive enough to analyze the atmosphere of distant planets. By measuring light from the parent stars, and how its reflected in the planets atmospheres, it will be able to determine if there are life-supporting elements and evidence of biological life – such as oxygen and methane.

TESS_comparisonBecause these planets are light years away, and because the reflected light is incredibly dim, the James Webb Space Telescope will only be able to do this for large planets that orbit red and white dwarfs. Still, that leaves thousands or even millions of candidates that it will be able to observe, and determine whether or not they are already inhabited by extra-terrestrial life.

And last, but not least, there’s the New Worlds Mission, which aims to put a Starshade – which is essentially a big flying space umbrella – into space. This disc would then fly between the James Webb Space Telescope and the star its observing, blocking out large amounts of light and the result “noise pollution” from nearby bright stars that the JWST isn’t observing.

Starshade_1280x720_H264With the Starshade in place, the JWST would be able to probe thousands of nearby planets for signs of life and return data to Earth that is of far greater accuracy. The New Worlds Mission is currently in the prototyping stage, but NASA hopes to procure the necessary funding by 2015 and and launch it within the JWST’s own lifetime.

Because of all this, it is now believed that by 2020 (give or take a few years) we will have the ability to directly image a distant planet and analyze its atmosphere. And if we find methane or another biological marker on just one planet, it will completely redefine our understanding of the universe and the lifeforms that inhabit it.

The answer to the question – “are we alone in the universe?” – may finally be answered, and within our own lifetime. And in the meantime, be sure to enjoy this video of the Starshade space umbrella, courtesy of New Scientist.


In Remembrance of Columbia

The STS-107 crew includes, from the left, Mission Specialist David Brown, Commander Rick Husband, Mission Specialists Laurel Clark, Kalpana Chawla and Michael Anderson, Pilot William McCool and Payload Specialist Ilan Ramon. (NASA photo)
The STS-107 crew includes, from the left, Mission Specialist David Brown, Commander Rick Husband, Mission Specialists Laurel Clark, Kalpana Chawla and Michael Anderson, Pilot William McCool and Payload Specialist Ilan Ramon. (NASA photo)

Just two days ago, the tenth anniversary of the shuttle Columbia disaster came to pass. On that day, the pilots who lost their lives, as well as those who died on the Challenger and Apollo 1 missions, were commemorated at a special wreath-laying ceremony at the Arlington National Cemetery in Virginia. It is a somber day, when people all over the world come together to commemorate those brave souls who died in the name of advancing exploration.

The disaster took place on Feb. 1st 2003, roughly sixteen days after the shuttle departed from Earth to conduct microgravity experiments. During re-entry, contact was lost with the shuttle as the orbiter suffered a catastrophic failure due to a breach that had opened in one of the shuttle’s wings. This had occurred during launch when a piece of foam fell from the external tank during launch.

columbia_arlingtonThe seven person crew of the STS-107 Columbia, which included Rick D. Husband, William C. McCool, David Brown, Laurel Blair Salton Clark, Michael P. Anderson, Ilan Ramon, and Kalpana Chawla, died just 15 minutes before they were meant to touch down at Kennedy Space Center. Addressing the nation, then-President Bush said, “mankind is led into the darkness beyond our world by the inspiration of discovery and the longing to understand. Our journey into space will go on.”

On Feb. 1st, President Obama and Charles Bolden, Administrator for NASA, also marked the occasion with somber words of remembrance. The former emphasized the ongoing important of space exploration and its inherent risks:

“The exploration of space represents one of the most challenging endeavors we undertake as a Nation. Whether it’s landing a 1-ton rover on Mars, building a space telescope 100 times more powerful than the Hubble, or preparing to send humans beyond the Moon, it’s imperative America continues to lead the world in reaching for the stars while giving us a better understanding of our home planet.”

Bolden expressed similar sentiments, calling to mind other tragedies and drawing attention to the lessons learned from the disaster:

“After the tragedy of Columbia, we not only returned to flight, we established policies and procedures to make our human spaceflight program safer than ever. Exploration will never be without risk, but we continue to work to ensure that when humans travel to space, nothing has been left undone to make them as safe as possible.”

Naturally, I hope he’s right about that. As we embark on an era of renewed exploration – to the Moon, to Mars, and even beyond – there will plenty of risk incurred and only a few people bold and intrepid enough to risk their lives to see it done. Much like veterans who died in the name of peace, we should never forget those explorers who died in the name of advancing humanity’s knowledge, awareness, and understanding of the universe.

Rest In Peace you brave souls!



Universe Today

Hey all. Just wanted to take a minute to publicize a very cool website that deals in all things science, especially astronomy, physics, and the planets. Not only is it a very cool place to pick up some additional knowledge, its also my part-time employer. If you’ve any interest in reading a brief but educational article on a wide range of subjects, just enter my name “Matt Williams” or click around. You’re sure to find something that tickles your fancy!

Universe Today