Officially, it’s known as “neurohacking” – a method of biohacking that seeks to manipulate or interfere with the structure and/or function of neurons and the central nervous system to improve or repair the human brain. In recent years, scientists and researchers have been looking at how Deep Brain Stimulation (DBS) could be used for just such a purpose. And the results are encouraging, indicating that the technology could be used to correct for neurological disorders.
The key in this research has to do with the subthalamic nucleus (STN) – a component of the basal ganglia control system that is interconnected to the motor areas of the brain. Researchers initially hit upon the STN as a site for stimulation when studying monkeys with artificially induced movement disorders. When adding electrical stimulation to this center, the result was a complete elimination of debilitating tremors and involuntary movements.
DIY biohacker Anthony Johnson – aka. “Cyber AJ” – also recently released a dramatic video where he showed the effects of DBS on himself. As a Parkison’s sufferer, Johnson was able to demonstrate how the applications of a mild electrical stimulus from his Medtronic DBS to the STN region of his brain completely eliminated the tremors he has had to deal with ever since he was diagnosed.
But in spite of these positive returns, tests on humans have been slow-going and somewhat inconclusive. Basically, scientists have been unable to conclude why stimulating the STN would eliminate tremors, as the function of this region of the brain is still somewhat of a mystery. What’s more, they also determined that putting electrodes in any number of surrounding brain nuclei, or passing fiber tracts, seems to have similar beneficial effects.
In truth, when dealing with people who suffer from neurological disorders, any form of stimulation is likely to have a positive effect. Whether it is Parkinson’s, Alzheimer’s, Tourettes, Autism, Aspergers, or neurological damage, electrical stimulation is likely to produce moments of lucidity, greater recall, and more focused attention. Good news for some, but until such time as we know how and in what ways the treatment needs to happen, lasting treatment will be difficult.
Luckily, research conducted by the Movement Disorders Group at Oxford University, led by Peter Brown, has provided some degree of progress in this field. Since DBS was first discovered, they have been busily recording activity through what is essentially a brain-computer interface (BCI) in the hopes of amassing meaningful data from the brain as it undergoes stimulation moment-by-moment.
For starters, it is known that the symptoms of Parkinson’s and other such disorders fluctuate continuously and any form of smart control needs to be fast to be effective. Hence, DBS modules need to be responsive, and not simply left on all the time. Hence, in addition to their being electrodes that can provide helpful stimulus, there also need to be sensors that can detect when the brain is behaving erratically.
Here too, it was the Oxford group that came up with a solution. Rather than simply implanting more junk into the brain – expensive and potentially dangerous – Brown and his colleagues realized that the stimulation electrodes themselves can be used to take readings from the local areas of the brain and send signals to the DBS device to respond.
By combining BCI with DBS – lot of acronyms, I know! – the Oxford group and those like them have come away with many ideas for improvements, and are working towards an age where a one-size-fits-all DBS system will be replaced with a new series of personalized implants.
In the meantime, a number of recreational possibilities also exist that do not involve electrodes in the brain. The tDCS headband is one example, a headset that provides transcranial direct current stimulation to the brain without the need for neurosurgery or any kind of brain implant. In addition to restoring neuroplasticity – the ability of the brain to be flexible and enable learning and growth – it has also been demonstrated to promote deeper sleep and greater awareness in users.
But it is in the field of personalized medical implants, the kinds that can correct for neurological disorders, that the real potential really exists. In the long-run, such neurological prosthesis could not only going to lead to the elimination of everything from mental illness to learning disabilities, they would also be the first step towards true and lasting brain enhancement.
It is a staple of both science fiction and futurism that merging the human brain with artificial components and processors is central to the dream of transhumanism. By making our brains smarter, faster, and correcting for any troubling hiccups that might otherwise slow us down, we would effectively be playing with an entirely new deck. And what we would be capable of inventing and producing would be beyond anything we currently have at our disposal.
Sources: Extremetech.com, (2)
Biohacking. Sounds like a recipe for world domination, if you ask me.
Cue doom music!
(The Imperial March is playing. Out steps a figure robed in black)
I am Darth Lucifous, and I am your worse nightmare!