The Future is Here: DARPA’s Nervous System Implants

DARPA_implantHard on the heels of their proposed BRAIN initiative – a collaborative research initiative to map the activity of every neuron in the human brain – DARPA has announced a bold new program to develop tiny electronic implants that will be able to interface directly with the human nervous system to control and regulate many different diseases and chronic conditions, such as arthritis, PTSD, Crohn’s disease, and depression.

The program, called ElectRx (pronounced ‘electrics’), ultimately aims to replace medication with “closed-loop” neural implants which monitor the state of your health and then provide the necessary nerve stimulation to keep your organs and biological systems functioning properly. The work is primarily being carried out with US soldiers and veterans in mind, but the technology will certainly percolate down to civilians as well.

electrx-darpaThe ElectRx program will focus the relatively new area of medical therapies called neuromodulation, which seeks to modulate the nervous system to improve neurological problem. Notable examples of this are cochlear implants which restore hearing by modulating your brain’s auditory nerve system, and deep brain stimulation (DBS) which is apparently capable of curing/regulating conditions  like depression and Parkinson’s by overriding erroneous neural spikes.

So far, these implants have been fairly large, which makes implantation fairly invasive and risky. Most state-of-the-art implants also lack precision, with most placing the stimulating electrodes in roughly the right area, but which are unable to target a specific bundles of nerves. With ElectRx, DARPA wants to miniaturize these neuromodulation implants so that they’re the same size as a nerve fiber.

electrx-darpa-implant-diagramThis way they can be implanted with a minimally invasive procedure (through a needle) and attached to specific nerve fibers, for very precise stimulation. While these implants can’t regulate every condition or replace every medication (yet), they could be very effective at mitigating a large number of conditions. A large number of conditions are caused by the nervous system misfiring, like inflammatory diseases, brain and mental health disorders.

Currently, a variety of drugs are used to try and cajole these awry neurons and nerves back in-line by manipulating various neurotransmitters. However, the science behind these drugs is not yet exact, relying heavily on a trial-and-error approach and often involving serious side-effects. Comparatively, an electronic implant that could “catch” the misfire, cleans up the signal, and then retransmits it would be much more effective.

cochlear_implantAs DARPA’s Doug Weber explained:

The technology DARPA plans to develop through the ElectRx program could fundamentally change the manner in which doctors diagnose, monitor and treat injury and illness. Instead of relying only on medication — we envision a closed-loop system that would work in concept like a tiny, intelligent pacemaker. It would continually assess conditions and provide stimulus patterns tailored to help maintain healthy organ function, helping patients get healthy and stay healthy using their body’s own systems.

Despite requiring a lot of novel technological breakthroughs, DARPA is planning to perform human trials of ElectRx in about five years. The initial goal will be improving the quality of life for US soldiers and veterans. And while they have yet to announce which conditions they will be focusing on, it is expected that something basic like arthritis will be the candidate – though there are expectations that PTSD will become a source sooner other than later.

AI'sAnd this is just the latest neurological technology being developed by DARPA. Earlier in the year, the agency announced a similar program to develop a brain implant that can restore lost memories and experiences. A joint fact sheet released by the Department of Defense and the Veteran’s Association revealed that DARPA also secured 78 million dollars to build the chips as part of the government’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) program.

While DARPA’s ElectRx announcement is purely focused on the medical applications of miniature neural implants, there are of course a variety of other uses that might arise from elective implantation – for soldiers as well as civilians. With a few well-placed implants in a person’s spine, they could flip a switch and ignore any pain reported by your limbs, allowing them to withstand greater physical stress or ignore injuries.

posthumanImplants placed in muscle fibers could also provide added electrostimulation to provide extra boosts of raw muscle power. And With precision-placed implants around the right nerve fibers, people could gain manual control of their organs, allowing them to speed up or slow down their hearts, turbo-charge their livers, or tweak just about any other function of their bodies.

The age of the Transhuman looms, people!

Source: extremetech.com, motherboard.vice.com, darpa.mil

The Future is Here: Memory Prosthetics

Restoring Active Memory (Shutterstock)Developing implants that can restore damaged neural tissue – either by restoring the connections between damaged memory synapses or restoring cognitive function – is seen as the next great leap in prosthetic medicine. In recent years, steps have been taken in both areas, offering patients and willing subjects the option of restoring or hacking their neurology.

For example, last year, researchers working at the University of California and the University of Pennsylvania successfully managed to design and implement a brain implant that acted as a bypass for damaged brain tissue. This neural prosthesis successfully restored brain function in rats, demonstrating that the closed-loop brain-machine-brain interface could one day perform the same function in brain-damaged humans.

brain-darpa-617x416And as with many such projects, the Defense Advanced Research Projects Agency (DARPA) soon became involved, taking up the reins to fund the research and development of the technology. As part of the DARPA Restoring Active Memory (RAM) program, the device is currently being developed with the hope of restoring memory function in veterans who have suffered a traumatic brain injury.

Currently, over 270,000 military service members since 2000 and an estimated 1.7 million civilians in the US are affected by TBI, which often manifests as an inability to retrieve memories formed before being injured and an impaired ability to form new memories. Currently, there are also no effective treatments available, and beyond veterans, there are countless people around the world who suffer from the same condition as a result of accidents.

brainscansThe teams will first develop computer models that describe how neurons code memories, as well as analyzing neural signals in order to understand how targeted stimulation might help restore the brain’s ability to form memories. The UCLA team will use data collected from epilepsy patients that already have electrodes implanted in their brains to develop a model of the hippocampal-entorhinal system – known to be involved in learning and memory.

Meanwhile, the University of Pennsylvania team will study neurosurgical patients with implanted brain electrodes, recording data as they play computer-based memory games in order to gain an understanding of how successful memory function works. All patients will be volunteers, and the teams then plan to integrate these models into implantable closed-loop systems.

brain_chip2Like the research on rats, the implant will pick up neural signals from an undamaged section of the brain and route it around the damaged portion, effectively forming a new neural link that functions as well as the undamaged brain. And this is not the only research that aims to help assist in memory function when it comes to veterans and those suffering from TBI.

At Lawrence Livermore National Labs (LLNL), for example, efforts are being made to create a new type of “memory bridge”. This research builds upon similar efforts from USC, where researcher Ted Berger developed the first implantable memory device (coincidentally, also as part of DARPA’s RAM program) where limited electrodes were applied to the hippocampal regions of the brain to assist in recall and memory formation.

brain-implant-hippocampus-usc-640x424However, until now, no research lab has had any real clue as to what kinds of “codes” are involved when applying electrical stimulus to the brain. The LLNL group, which previously contributed to the groundbreaking Argus II retinal prosthesis is now taking a more integrated approach. With the recent announcement of ample federal BRAIN Initiative funding, they aim to build multifunction electro-optical-chemical neural sensor-effectors.

On the electrical end, LLNL’s new wafer technology will use fairly high electrode counts (perhaps 500-1000 spots). Compared to the usual higher density 11,000-electrode chips that have been used in the past, these chips will have more sparsely distributed electrode locations. Integrated light guides will provide conduits for optogenetic manipulations, and as an added bonus bi-directional fluid channels for any number of chemical exchanges are also etched in. 

llnl-brain-implantAnd like their California/Penn colleagues, the LLNL has teamed up with DARPA to get the funding they need to make this project a reality. So far, DARPA funders have brought in the implant heavyweight Medtronic, which made news last year with the development of its own closed-loop stimulators, to lend its expertise. In their case, the stimulators merged Brain-Computer Interface (BCI) with Deep Brain Stimulation (DBS) to treat Parkinson’s.

Unfortunately, while immense progress in being made at the hardware end of things, there is still the matter of cracking the brains code first. In other words, where the device needs to be placed and which neurons need to be precisely controlled remain a mystery. Not all neurons are the same, and control hierarchies and preferred activation paths will inevitably emerge.

DeepBrain-New1Ultimately, what is needed in order to make precisely-targeted deep brain stimulation (DBS) possible is a real 3D model of the regions of the brain involved. Multiple efforts are underway, not the least of which are the work of Michele Tagliati’s group from the Movement Disorders Program in the department of neurology at Cedars-Sinai, or the Human Brain Project in Luasanne, Switzerland.

In these and other cases, the use of MRIs and brain scans to create a working map of the human brain – so that attempts to create biomimetic prosthetics that can enhance or assist in it’s functions – is the ultimate goal. And once researchers have a better idea of what the brain’s layout is, and what kinds of control hierarchies and paths are involved, we can expect to see brain implants becoming a regular feature of medicine.

And as always, devices that can restore function also open the way for the possibility of enhancement. So we can also expect that bionics prosthetics that restore memory and cognitive function will give way to ones that boost these as well. The dream of Homo Superior, the post-human, or transhumanism – whatever you choose to call it – is looking to be increasingly within our grasp.

And be sure to check out this video from LLNL showcasing how their new neural implant works:


Sources:
 cnet.com, extremetech.com, darpa.mil

The Future of Medicine: Gene Therapy and Treatments

DNA-1Imagine a world where all known diseases were curable, where health problems could be treated in a non-invasive manner, and life could be extended significantly? Thanks to ongoing research into the human genome, and treatments arising out of it, that day may be coming soon. That’s the idea behind gene therapy and pharmacoperones – two treatment procedures that may make disease obsolete in the near future.

The first comes to us from the Utah School of Medicine, where researcher Amit Patel recently developed a non-invasive, naked DNA approach to deal with treating heart problems. His process was recently tested o Ernie Lively, an actor suffering from heart damage, who made a full recovered afterwards without ever having to go under the knife.

gene_therapyIn short, Patel’s method relies on a catheter, which he used to access the main cardiac vein (or coronary sinus), where a balloon is inflated to halt the flow of blood and isolate the area. A high dose of naked DNA, which codes for a protein called SDF-1, is then delivered. SDF-1, which stands for stromal cell-derived factor, is a potent attractant both for stem cells circulating in the bloodstream, and for those developing in the bone marrow.

Stromal cells, which manufacture SDF-1, are the creative force which knit together our fibrous connective tissues. The problem is they do not make enough of this SDF-1 under normal conditions, nor do specifically deliver it in just the right places for repair of a mature heart. By introducing a dose of these cells directly into the heart, Patel was able to give Lively what his heart needed, where it needed it.

gene_therapy1Compared to other gene therapies, the introduction of SDF-1 into cells was done without the assistance of a virus. These “viral vector” method have had trouble in the past due to the fact that after the virus helps target specific cells for treatment, the remnant viral components can draw unwanted attention from the immune system, leading to complications.

But of course, there is still much to be learned about the SDF-1 treatment and others like it before it can be considered a viable replacement for things like open-heart surgery. For one, the yield – the number or percentage of cells that take up the DNA – remains unknown. Neither are the precise mechanisms of uptake and integration within the cell known here.

Fortunately, a great deal of research is being done, particularly by neuroscientists who are looking to control brain cells through the use of raw DNA as well. Given time, additional research, and several clinical trials, a refined version of this process could be the cure for heart-related diseases, Alzheimer’s, and other disorders that are currently thought to be incurable, or require surgery.

pharmacoperones-protein-foldingAnother breakthrough treatment that is expected to revolutionize medicine comes in the form of pharmacoperones (aka. “protein chaperones”). a new field of drugs that have the ability to enter cells and fix misfolded proteins. These kind of mutations usually result in proteins becoming inactive; but in some cases, can lead to toxic functionality or even diseases.

Basically, proteins adopt their functional 3-D structure by folding linear chains of amino acids, and gene mutation can cause this folding process to go awry, resulting in “misfolding”. Up until recently, scientists believed these proteins were simply non-functional. But thanks to ongoing research, it is now known their inactivity is due to the cell’s quality control system misrouting them within the cell.

protein1Although this process has been observed under a microscope in recent years, a team led by Doctor P. Michael Conn while at Oregon Health & Science University (OHSU) was the first to demonstrate it in a living laboratory animal. The team was able to cure mice of a disease that makes the males unable to father offspring, and believe the technique will also work on human beings.

The team says neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and Huntington’s, as well as certain types of diabetes, inherited cataracts and cystic fibrosis are just a few of the diseases that could potentially be cured using the new approach. Now working at the Texas Tech University Health Sciences Center (TTUHSC), Conn and his team are looking to conduct human trials.

DNA-molecule2One of the hallmarks of the coming age of science, technology and medicine is the idea that people will be living in post-mortality age, where all diseases and conditions are curable and life can be extended almost indefinitely. Might still sound like science fiction, but all of this research is indicative of the burgeoning trend where things that were once thought to be “treatable but not curable” is a thing of the past.

It’s an exciting time to be living in, almost as exciting as the world our children will be inhabiting – assuming things go according to plan. And in the meantime, check out this video of the SDF-1 gene therapy in action, courtesy of the University of Utah School of Medicine:


Sources: extremetech.com, gizmag.com

The Future of Medicine: “Hacking” Neurological Disorders

brain-scan_530Officially, it’s known as “neurohacking” – a method of biohacking that seeks to manipulate or interfere with the structure and/or function of neurons and the central nervous system to improve or repair the human brain. In recent years, scientists and researchers have been looking at how Deep Brain Stimulation (DBS) could be used for just such a purpose. And the results are encouraging, indicating that the technology could be used to correct for neurological disorders.

The key in this research has to do with the subthalamic nucleus (STN) – a component of the basal ganglia control system that is interconnected to the motor areas of the brain. Researchers initially hit upon the STN as a site for stimulation when studying monkeys with artificially induced movement disorders. When adding electrical stimulation to this center, the result was a complete elimination of debilitating tremors and involuntary movements.

DIY biohacker Anthony Johnson – aka. “Cyber AJ” – also recently released a dramatic video where he showed the effects of DBS on himself. As a Parkison’s sufferer, Johnson was able to demonstrate how the applications of a mild electrical stimulus from his Medtronic DBS to the STN region of his brain completely eliminated the tremors he has had to deal with ever since he was diagnosed.


But in spite of these positive returns, tests on humans have been slow-going and somewhat inconclusive. Basically, scientists have been unable to conclude why stimulating the STN would eliminate tremors, as the function of this region of the brain is still somewhat of a mystery. What’s more, they also determined that putting electrodes in any number of surrounding brain nuclei, or passing fiber tracts, seems to have similar beneficial effects.

In truth, when dealing with people who suffer from neurological disorders, any form of stimulation is likely to have a positive effect. Whether it is Parkinson’s, Alzheimer’s, Tourettes, Autism, Aspergers, or neurological damage, electrical stimulation is likely to produce moments of lucidity, greater recall, and more focused attention. Good news for some, but until such time as we know how and in what ways the treatment needs to happen, lasting treatment will be difficult.

brain-activityLuckily, research conducted by the Movement Disorders Group at Oxford University, led by Peter Brown, has provided some degree of progress in this field. Since DBS was first discovered, they have been busily recording activity through what is essentially a brain-computer interface (BCI) in the hopes of amassing meaningful data from the brain as it undergoes stimulation moment-by-moment.

For starters, it is known that the symptoms of Parkinson’s and other such disorders fluctuate continuously and any form of smart control needs to be fast to be effective. Hence, DBS modules need to be responsive, and not simply left on all the time. Hence, in addition to their being electrodes that can provide helpful stimulus, there also need to be sensors that can detect when the brain is behaving erratically.

neuronsHere too, it was the Oxford group that came up with a solution. Rather than simply implanting more junk into the brain – expensive and potentially dangerous – Brown and his colleagues realized that the stimulation electrodes themselves can be used to take readings from the local areas of the brain and send signals to the DBS device to respond.

By combining BCI with DBS – lot of acronyms, I know! – the Oxford group and those like them have come away with many ideas for improvements, and are working towards an age where a one-size-fits-all DBS system will be replaced with a new series of personalized implants.

tcdsIn the meantime, a number of recreational possibilities also exist that do not involve electrodes in the brain. The tDCS headband is one example, a headset that provides transcranial direct current stimulation to the brain without the need for neurosurgery or any kind of brain implant. In addition to restoring neuroplasticity – the ability of the brain to be flexible and enable learning and growth – it has also been demonstrated to promote deeper sleep and greater awareness in users.

But it is in the field of personalized medical implants, the kinds that can correct for neurological disorders, that the real potential really exists. In the long-run, such neurological prosthesis could not only going to lead to the elimination of everything from mental illness to learning disabilities, they would also be the first step towards true and lasting brain enhancement.

transhuman3It is a staple of both science fiction and futurism that merging the human brain with artificial components and processors is central to the dream of transhumanism. By making our brains smarter, faster, and correcting for any troubling hiccups that might otherwise slow us down, we would effectively be playing with an entirely new deck. And what we would be capable of inventing and producing would be beyond anything we currently have at our disposal.

Sources: Extremetech.com, (2)