Judgement Day Update: Artificial Muscles for Robots

artificial-muscle-1It’s a science fiction staple, the android or humanoid robot opens up its insides to reveal a network of gears or brightly-lit cables running underneath. However, as the science behind making androids improves, we are moving farther and farther away from this sci-fi cliche. In fact, thanks to recent advancements, robots in the future may look a lot like us when you strip away their outer layers.

It’s what is known as biomimetics, the science of creating technology that mimics biology. And the latest breakthrough in this field comes from National University of Singapore’s Faculty of Engineering where researchers have developed the world’s first “robotic” muscle. Much like the real thing, this artificial tissue extends to five times its original length, has the potential to lift 80 times its own weight.

???????????????????????In addition to being a first in robotics, this new development is exciting because it resolves a central problem that has plagued robots since their inception. In the 1960s, John W. Campbell Jr, editor of Analog Science Fiction magazine, pointed out this problem when he outlined a scenario where a man is chased across rough country by a mad scientist’s horde of killer robots.

In this scenario, the various models that were chasing the man were stymied by obstacles that the he could easily overcome, such as sinking in mud, jumping over logs, getting around rocks, or tangled up in bushes. In the end, the only robots that were capable of keeping up with him were so light and underpowered that he was able to tear them apart with his bare hands.

robot_muscleThis is a far cry from another science fiction staple, the one which presents robots as powerful automatons that can bend steel girders and carry out immense feats of strength. While some robots certainly can do this, they are extremely heavy and use hydraulics for the heavy lifting. Pound for pound, they’re actually very weak compared to a human, being capable of lifting only half their weight.

Another problem is the fact that robots using gears and motors, pneumatics, or hydraulics lack fine control. They tend to move in jerky motions and have to pause between each move, giving rise to a form of motion that we like to call “the robot”. Basically, it is very difficult to make a robot that is capable of delicate, smooth movements, the kind humans and animals take for granted.

kenshiroFor some time now, scientists and researchers have been looking to biomimetics to achieve the long sought-after dream of smaller, stronger robots that are capable of more refined movements. And taken in tandem with other development – such as the Kenshiro robot developed by roboticists at the University of Tokyo – that time might finally be here.

Developed by a four-person team led by Dr. Adrian Koh – from the NUS Engineering Science Program and Department of Civil and Environmental Engineering – the new artificial muscle is an example of an electroactive polymer. Basically, this is a combination dielectric elastomer and rubber that changes shape when stimulated by an electric field. In this respect, the artificial muscle is much like an organic one, using electrical stimulus to trigger movement.


robot-arm-wrestling-03-20-09Robots using artificial muscles would be a far cry from clanking mechanical men. They would be much more lifelike, capable of facial expression and precise, graceful movements. They would also have superhuman strength, yet weigh the same as a person. In addition, the polymer used to fabricate the muscles may have more general applications in machines, such as cranes.

An added bonus of the polymer is that is can convert and store energy, which means it’s possible to design robots that power themselves after charging for only minutes. In a statement released by his department, Dr. Koh highlighted the benefits of the design and what it is capable of doing:

Our novel muscles are not just strong and responsive. Their movements produce a by-product – energy. As the muscles contract and expand, they are capable of converting mechanical energy into electrical energy. Due to the nature of this material, it is capable of packing a large amount of energy in a small package. We calculated that if one were to build an electrical generator from these soft materials, a 10 kg (22 lb) system is capable of producing the same amount of energy of a one-ton electrical turbine.

AI_robotDr. Koh also indicated that robots equipped with these types of muscles “will be able to function in a more human-like manner – and outperform humans in strength.” Theoretically, such polymer-based tissues could extend to ten times their original length and lift up to 500 times its own weight, though the current version isn’t anywhere near that limit just yet.

In the meantime, Dr Koh and his team have applied for a patent for the artificial muscle and are continuing work on it. They predict that within five years they could have a robot arm that is half the size and weight of a human arm, yet could win an arm wrestling match. And the applications are limitless, ranging from robotic servants to search and rescue bots and heavy robot laborers. And let’s not forget that cybernetic arms that boast that kind of increased strength are also likely to become a popular prosthetic and enhancement item.

And for those who are naturally afraid of a future where super-human robots that have the strength to tear us limb from limb are walking among us, let me remind you that we still have Asimov’s “Three Laws of Robotics” to fall back on. Never mind what happened in the terrible movie adaptation, those laws are incontrovertible and will work… I hope!

Sources: gizmag.com, engadget.com, 33rdsqaure.com

3 thoughts on “Judgement Day Update: Artificial Muscles for Robots

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s