Judgement Day Update: Cheetah Robot Unleashed!

MIT-Cheetah-05-640x366There have been lots of high-speed bio-inspired robots in recent years, as exemplified by Boston Dynamics WildCat. But MIT’s Cheetah robot, which made its big debut earlier this month, is in a class by itself. In addition to being able to run at impressive speeds, bound, and jump over obstacles, this particular biomimetic robot is also being battery-and-motor driven rather than by a gasoline engine and hydraulics, and can function untethered (i.e. not connected to a power source).

While gasoline-powered robots are still very much bio-inspired, they are dependent on sheer power to try and match the force and speed of their flesh-and-blood counterparts. They’re also pretty noisy, as the demonstration of the WildCat certainly showed (video below). MIT’s Cheetah takes the alternate route of applying less power but doing so more efficiently, more closely mimicking the musculoskeletal system of a living creature.

mit-cheetahThis is not only a reversal on contemporary robotics, but a break from history. Historically, to make a robot run faster, engineers made the legs move faster. The alternative is to keep the same kind of frequency, but to push down harder at the ground with each step. As MIT’s Sangbae Kim explained:

Our robot can be silent and as efficient as animals. The only things you hear are the feet hitting the ground… Many sprinters, like Usain Bolt, don’t cycle their legs really fast. They actually increase their stride length by pushing downward harder and increasing their ground force, so they can fly more while keeping the same frequency.

MIT’s Cheetah uses much the same approach as a sprinter, combining custom-designed high-torque-density electric motors made at MIT with amplifiers that control the motors (also a custom MIT job). These two technologies, combined with a bio-inspired leg, allow the Cheetah to apply exactly the right amount of force to successfully bound across the ground and navigate obstacles without falling over.

MIT-cheetah_jumpWhen it wants to jump over an obstacle, it simply pushes down harder; and as you can see from the video below, the results speak for themselves. For now, the Cheetah can run untethered at around 16 km/h (10 mph) across grass, and hurdle over obstacles up to 33 centimeters high. The Cheetah currently bounds – a fairly simple gait where the front and rear legs move almost in unison – but galloping, where all four legs move asymmetrically, is the ultimate goal.

With a new gait, and a little byte surgery to the control algorithms, MIT hopes that the current Cheetah can hit speeds of up to 48 km/h (30 mph), which would make it the fastest untethered quadruped robot in the world. While this is still a good deal slower than the real thing  – real cheetah’s can run up to 60 km/h (37 mph) – it will certainly constitute another big step for biomimetics and robotics.

Be sure to check out the video of the Cheetah’s test, and see how it differs from the Boston Dynamics/DARPA’s WildCat’s tests from October of last year:



Source:
extremetech.com

The Future is Here: The Walking Bio-Robot

walking-bio-robot-spinal-muscleGiven that the field of robotics and electronics are making inroads into the field of biology – in the form of biorobotics and bionics – it was only a matter of time before applications began moving in the other direction. For example, muscles have been considered in recent years as a potential replacement for electric actuators, in part because they can run in a nutrient-rich fluid without the need for any other power source.

The latest example of this biological-technological crossover comes from Illinios, where bio-robotics experts have demonstrated a bio-bot built from 3-D printed hydrogel and spinal muscle tissue that can “walk” in response to an electrical signal. Less than a centimeter in length, the “bio-bot” responds to electrical impulses that cause the muscle to contract.

According to study leader, Professor Rashid Bashir, biological tissue has several advantages over other robotic actuators:

[Muscle] is biodegradable, it can run in fluid with just some nutrients and hence doesn’t need external batteries and power sources – and it could eventually be controlled by neurons in our future work.

walking-bio-robot-spinal-muscle-3Previous versions, using heart muscle tissue, were also able to “walk” but were not controllable, as heart tissue contracts constantly of its own accord. Spinal muscle, by contrast, responds to external electrical stimuli and provide a range of a range of potential uses. These include bio-robots being able to operate inside the body in medical applications, or being used outdoors in environmental services.

And though this design is very simple, it serves as a proof of concept that demonstrates that the technology works. Bashir and his team are now looking to start extending toward more complex machines – incorporating neurons that can get the bot walking in different directions when faced with different stimuli. Initially, they’ll look at designing a more complex hydrogel backbone that gives the robot the ability to move in more than one direction.

walking-bio-robot-spinal-muscle-6They’re also looking at integrating neurons to steer the tiny bots around, either using light or chemical gradients as a trigger. This would be a key step toward being able to design bots for a specific purpose. As Bashir said:

The idea of doing forward engineering with these cell-based structures is very exciting. Our goal is for these devices to be used as autonomous sensors. We want it to sense a specific chemical and move towards it, then release agents to neutralize the toxin, for example. Being in control of the actuation is a big step forward toward that goal.

This development is significant for a number of reasons. Not only is it a step on the road towards bionics and biorobotics, it also demonstrates that the merging of technology and biology works both ways. Not only are machines being designed to improve our biology, our biology is also inspiring machinery, and even being used for its unique and superior properties to make machines run better as well.

And be sure to watch this video of the muscle-powered bio-robot being explained:


Source:
gizmag.com
, news.illinois.edu

The Future of Medicine: Fake Muscles and 3D Printed Implants

3d-printed-jawWhen it comes to the future of medicine, its becoming increasingly clear that biomimetics and 3D printing will play an important role. Basically, this amounts to machines that are designed to mimic biology for the sake of making our bodies run better. In addition, it means that both medical machines and organic parts could be created on site, allowing for speedier, accessible and more cost-effective interventions and augmentations.

For example, research being conducted at Harvard’s Wyss Institute for Biologically Inspired Engineering and the Harvard School of Engineering and Applied Sciences has led to the creation of artificial muscle that can imitate the beating motion of the heart – also known as the “Left Ventricle Twist”. This development, which is a big break in the field of biomimetics, could also be a game-changer when it comes to producing artificial hearts.

Artificial-Muscles-pic-1-400x267Their research started with what is known as a pneumatic artificial muscle (PAM), one which was modeled after the striated muscle fibers found in the heart. Made from silicone elastomer and embedded with braided mesh, this artificial heart was then hooked up to an air tube to see how it would handle being inflated. When air was pumped into the PAM, it responded by twisting and thus becoming shorter. This is similar to what the natural fibers of the heart do, which contract by twisting and shortening.

Several of the PAMs were then embedded within a matrix of the same elastomer from which they were made. Through a process of manipulating their orientation to one another, along with selectively applying different amounts of pressure, the researchers were able to get some of the PAMs twisting in one direction, at the same time that others twisted in the opposite direction. As a result, the silicone matrix exhibited the same three-dimensional twisting motion as the heart.

ArtificialMusclespic2-375x252The immediate applications for this are obvious; in short, creating a range of artificial hearts for patients who suffer from severe disorders or heart damage. Unlike conventional artificial hearts, these ones would be able to provide pumping action similar to the real thing. In addition, the PAMs were able to mimic the change in motion that is caused by various heart disorders, and these could be used to help in the research of such conditions, not to mention the development of treatments for them.

Equally exciting are the possibilities being offered by 3D printing which now offers a range of artificial replacements. The latest example comes from the Netherlands, where a 22-year old woman has had the top of her skull replaced with a 3D printed implant. Due to a severe condition that causes a thickening of the skull, the patient was suffering from severe and worsening symptoms. And in a first of its kind procedure, she was given a tailor-made synthetic replacement.

3d-printed-skullAs Dr. Bon Verwei of the University Medical Center (UMC) Utrecht explained, the surgery was not only a first, it was absolutely essential:

The thickening of the skull puts the brain under increasing pressure. Ultimately, she slowly lost her vision and started to suffer from motor coordination impairment. It was only a matter of time before other essential brain functions would have been impaired and she would have died. So intensive surgery was inevitable, but until now there was no effective treatment for such patients.

So far, 3D printing has been used to produce lower jaw implants, prosthetic arms, legs, and cells (kidney, liver, and skin cells). In this instance, the skull was 3D-modeled and then printed as a single full piece that was able to be slotted and secured into place. Prior to the procedure, Verwej and his team had to familiarize themselves with reconstructions and 3D printing, in particular that which pertained to partial skull implants.

3d-printed-cheekImplants have often been used when part of a skull has been removed to reduce pressure on an patient’s brain. However, Verweij claimed that cement implants are not always a good fit, and that 3D printing allows for exact specifications. As he explained it:

This has major advantages, not only cosmetically but also because patients often have better brain function compared with the old method.

Verweij worked with an Australian company called Anatomics – which uses 3D printing to produce custom-made implants and surgical models for medical practitioners – to produce the replacement skull. The surgery, only just announced, was carried out three months ago and was a success. According to Verweij, the patient has fully regained her vision and has returned to her normal life. The work undertaken on the procedure means that UMC Utrecht is now is a position to carry out other similar work.

3d-printed-skull-0The ability to tailor-make synthetic bones, which are exact duplicates to the original, offers exciting possibilities for reconstructive and replacement surgery. It also does away with some rather invasive and unsatisfactory procedures that involve putting shattered bones back together and joining them with pins, bars and screws. And considering that such procedures often require multiple operations, the combination of 3D scanning and 3D printed replacements is also far more cost effective.

And be sure to check out the video below that shows the Utrecht procedure. Be warned, the video contains actual footage of the surgery, and is therefore not recommended for the squeamish! English subtitles are also available via the video controls.


Sources:
gizmag.com, (2), wyss.harvard.edu

The Future is Here: The DARPA/BD Wildcat!

BD_atlasrobotThe robotics company of Boston Dynamics has been doing some pretty impressive things with robots lately. Just last year, they unveiled the Cheetah, the robotics company set a new land speed record with their four-footed robot named Cheetah. As part of DARPA’s Maximum Mobility and Manipulation program, the robotic feline demonstrated the ability to run at a speed of 45.06 km/h (28 mph).

And in July of this year, they impressed and frightened the world again with the unveiling of their ATLAS robot – a anthropomorphic machine. This robot took part in the DARPA Robotics Challenge program. capable of walking across multiple terrains, and demonstrated its ability to walk across multiple types of terrain, use tools, and survey its environment with a series of head-mounted sensors.

Atlas_robotAnd now, they’ve unveiled an entirely new breed of robot, one that is capable of running fast on any kind of terrain. It’s known as the WildCat, a four-legged machine that builds on the world of the Legged Squad Support System (LS3) that seeks to create a robot that can support military units in the field, carrying their heavy equipment and supplies over rugged terrain and be operated by remote.

So far, not much is known about the robot’s full capabilities and or when it is expected to be delivered. However, in a video that was released in early October, Boston Dynamics showed the most recent field test of the robot to give people a taste of what it looks like in action. In the video, the robot demonstrated a top speed of about 25 km/h (16 mph) on flat terrain using both bounding and galloping gaits.

Cheetah-robotFollowing in the footsteps of its four-legged and two-legged progeny, the WildCat represents a coming era of biomimetic machinery that seeks to accomplish impressive physical feats by imitating biology. Whereas the Atlas is designed to be capable of doing anything the human form can – traversing difficult terrain, surveying and inspecting, and using complex tools – the Cheetah, LS3, and WildCat draw their inspiration from nature’s best hunters and speed runners.

Just think of it: a race of machines that can climb rocky outcroppings with the sure-footedness of a mountain goat, run as fast as a cheetah, stalk like a lion, bound like an antelope, and swing like a monkey. When it comes right down to it, the human form is inferior in most, if not all, of these respects to our mammalian brethren. Far better that we imitate them instead of ourselves when seeking to create the perfect helpers.

LS3-AlphaDog6reducedIn the end, it demonstrates that anthropomorphism isn’t the only source of drive when it comes to developing scary and potential doomsday-bating robots! And in the meantime, be sure to enjoy these videos of these various impressive, scary, and very cool robots in action:

WildCat:


Cheetah:


Atlas:


Source:
universetoday.com, bostondynamics.com

Judgement Day Update: Artificial Muscles for Robots

artificial-muscle-1It’s a science fiction staple, the android or humanoid robot opens up its insides to reveal a network of gears or brightly-lit cables running underneath. However, as the science behind making androids improves, we are moving farther and farther away from this sci-fi cliche. In fact, thanks to recent advancements, robots in the future may look a lot like us when you strip away their outer layers.

It’s what is known as biomimetics, the science of creating technology that mimics biology. And the latest breakthrough in this field comes from National University of Singapore’s Faculty of Engineering where researchers have developed the world’s first “robotic” muscle. Much like the real thing, this artificial tissue extends to five times its original length, has the potential to lift 80 times its own weight.

???????????????????????In addition to being a first in robotics, this new development is exciting because it resolves a central problem that has plagued robots since their inception. In the 1960s, John W. Campbell Jr, editor of Analog Science Fiction magazine, pointed out this problem when he outlined a scenario where a man is chased across rough country by a mad scientist’s horde of killer robots.

In this scenario, the various models that were chasing the man were stymied by obstacles that the he could easily overcome, such as sinking in mud, jumping over logs, getting around rocks, or tangled up in bushes. In the end, the only robots that were capable of keeping up with him were so light and underpowered that he was able to tear them apart with his bare hands.

robot_muscleThis is a far cry from another science fiction staple, the one which presents robots as powerful automatons that can bend steel girders and carry out immense feats of strength. While some robots certainly can do this, they are extremely heavy and use hydraulics for the heavy lifting. Pound for pound, they’re actually very weak compared to a human, being capable of lifting only half their weight.

Another problem is the fact that robots using gears and motors, pneumatics, or hydraulics lack fine control. They tend to move in jerky motions and have to pause between each move, giving rise to a form of motion that we like to call “the robot”. Basically, it is very difficult to make a robot that is capable of delicate, smooth movements, the kind humans and animals take for granted.

kenshiroFor some time now, scientists and researchers have been looking to biomimetics to achieve the long sought-after dream of smaller, stronger robots that are capable of more refined movements. And taken in tandem with other development – such as the Kenshiro robot developed by roboticists at the University of Tokyo – that time might finally be here.

Developed by a four-person team led by Dr. Adrian Koh – from the NUS Engineering Science Program and Department of Civil and Environmental Engineering – the new artificial muscle is an example of an electroactive polymer. Basically, this is a combination dielectric elastomer and rubber that changes shape when stimulated by an electric field. In this respect, the artificial muscle is much like an organic one, using electrical stimulus to trigger movement.

 

robot-arm-wrestling-03-20-09Robots using artificial muscles would be a far cry from clanking mechanical men. They would be much more lifelike, capable of facial expression and precise, graceful movements. They would also have superhuman strength, yet weigh the same as a person. In addition, the polymer used to fabricate the muscles may have more general applications in machines, such as cranes.

An added bonus of the polymer is that is can convert and store energy, which means it’s possible to design robots that power themselves after charging for only minutes. In a statement released by his department, Dr. Koh highlighted the benefits of the design and what it is capable of doing:

Our novel muscles are not just strong and responsive. Their movements produce a by-product – energy. As the muscles contract and expand, they are capable of converting mechanical energy into electrical energy. Due to the nature of this material, it is capable of packing a large amount of energy in a small package. We calculated that if one were to build an electrical generator from these soft materials, a 10 kg (22 lb) system is capable of producing the same amount of energy of a one-ton electrical turbine.

AI_robotDr. Koh also indicated that robots equipped with these types of muscles “will be able to function in a more human-like manner – and outperform humans in strength.” Theoretically, such polymer-based tissues could extend to ten times their original length and lift up to 500 times its own weight, though the current version isn’t anywhere near that limit just yet.

In the meantime, Dr Koh and his team have applied for a patent for the artificial muscle and are continuing work on it. They predict that within five years they could have a robot arm that is half the size and weight of a human arm, yet could win an arm wrestling match. And the applications are limitless, ranging from robotic servants to search and rescue bots and heavy robot laborers. And let’s not forget that cybernetic arms that boast that kind of increased strength are also likely to become a popular prosthetic and enhancement item.

And for those who are naturally afraid of a future where super-human robots that have the strength to tear us limb from limb are walking among us, let me remind you that we still have Asimov’s “Three Laws of Robotics” to fall back on. Never mind what happened in the terrible movie adaptation, those laws are incontrovertible and will work… I hope!

Sources: gizmag.com, engadget.com, 33rdsqaure.com

The Future is Here: Nanofibre Heart Patches

heart_patchesFor years, medical researchers have been trying to find a solution to the problem of post-cardiac event health. You see, when a heart attack occurs, the damaged tissue doesn’t grow back, but instead forms non-beating scar tissue. This in turn permanently weakens the heart, making another cardiac event that much more probable.

However, researchers at Tel Aviv University are getting promising results from a possible solution using patches that contain cardiac cells and gold nanofibers. As with other experimental heart patches, the idea behind these ones is that they could be surgically placed on damaged areas of the heart, where they would cause normal, beating heart tissue to grow back.

gold_nanoparticlesTo create them, a team led by Dr. Tal Dvir started by integrating nanofibers made of gold nanoparticles into a three-dimensional scaffolding made of biomaterials. That scaffolding was then “seeded” with heart muscle cells. The high conductivity of the gold allowed those cells to communicate with one another by sending electrical signals through the network of nanofibers.

When viewed with an electron microscope, the cells were observed to be contracting in unison, which is essential to the proper beating of the heart. By contrast, cells that were placed on scaffolding without the embedded gold nanofibers displayed much weaker contractions. In other experiments, gold nanofibers have proven useful to enhancing heart heath. But in this case, may prove useful to replacing damaged heart tissue.

heart_healthNaturally, more work is needed before this new heart patch can be made available to patients. This includes human trials, which Dr. Dvir and his colleagues are hoping to conduct soon. Similar research is also being conducted at MIT, where scientists have created electrically conductive tissue scaffolds that include cardiac cells and gold nanowires.

This research is not only a boon for cardiac health, but is also a major step forward in terms of cybernetics, biomimetics, and nanotechnology. By merging the organic and synthetic at the nano level, and in a way that merges with our bodies natural architecture, a new breed of medical solutions are being made available that could make “permanent conditions” a thing of the past.

Source: gizmag.com, aftau.org

Judgement Day Update: The Human Brain Project

brain_chip2Biomimetics are one of the fastest growing areas of technology today, which seek to develop technology that is capable of imitating biology. The purpose of this, in addition to creating machinery that can be merged with our physiology, is to arrive at a computing architecture that is as complex and sophisticated as the human brain.

While this might sound the slightest bit anthropocentric, it is important to remember that despite their processing power, supercomputers like the D-Wave Two, IBM’s Blue Gene/Q Sequoia, or MIT’s ConceptNet 4, have all shown themselves to be lacking when it comes to common sense and abstract reasoning. Simply pouring raw computing power into the mix does not make for autonomous intelligence.

IBM_Blue_Gene_P_supercomputerAs a result of this, new steps are being taken to crate a computer that can mimic the very organ that gives humanity these abilities – the human brain. In what is surely the most ambitious step towards this goal to date, an international group of researchers recently announced the formation of the Human Brain Project. Having secured the $1.6 billion they need to fund their efforts, these researchers will spend the next ten years conducting research that cuts across multiple disciplines.

This will involve mapping out the vast network known as the human brain – a network composed of over a hundred billion neuronal connections that are the source of emotions, abstract thought, and this thing we know as consciousness. And to do so, the researchers will be using a progressively scaled-up multilayered simulation running on a supercomputer.

Human-Brain-project-Alp-ICTConcordant with this bold plan, the team itself is made up of over 200 scientists from 80 different research institutions from around the world. Based in Lausanne, Switzerland, this initiative is being put forth by the European Commission, and has even been compared to the Large Hadron Collider in terms of scope and ambition. In fact, some have taken to calling it the “Cern for the brain.”

According to scientists working on the project, the HBP will attempt to reconstruct the human brain piece-by-piece and gradually bring these cognitive components into the overarching supercomputer. The expected result of this research will be new platforms for “neuromorphic computing” and “neurorobotics,” allowing for the creation of computing and robotic architectures that mimick the functions of the human brain.

^According to a statement released by the HBP, Swedish Nobel Laureate Torsten Wiesel had this to say about the project:

The support of the HBP is a critical step taken by the EC to make possible major advances in our understanding of how the brain works. HBP will be a driving force to develop new and still more powerful computers to handle the massive accumulation of new information about the brain, while the neuroscientists are ready to use these new tools in their laboratories. This cooperation should lead to new concepts and a deeper understanding of the brain, the most complex and intricate creation on earth.

Other distinguished individuals who were quoted in the release include President Shimon Peres of Israel, Paul G. Allen, the founder of the Allen Institute for Brain Science; Patrick Aebischer, the President of EPFL in Switzerland; Harald Kainz, Rector of Graz University of Technology, Graz, Austria; as well as a slew of other politicians and academics.

Combined with other research institutions that are producing computer chips and processors that are modelled on the human brain, and our growing understanding of the human connectome, I think it would be safe to say that by the time the HBP wraps up, we are likely to see processors that are capable of demonstrating intelligence, not just in terms of processing speed and memory, but in terms of basic reasoning as well.

At that point, we really out to consider instituting Asimov’s Three Laws of Robotics! Otherwise, things could get apocalyptic on our asses! 😉


Sources:
io9.com, humanbrainproject.eu
, documents.epfl.ch

The Future is Here: Smart Skin!

neuronsWhen it comes to modern research and development, biomimetics appear to be the order of the day. By imitating the function of biological organisms, researchers seek to improve the function of machinery to the point that it can be integrated into human bodies. Already, researchers have unveiled devices that can do the job of organs, or bionic limbs that use the wearer’s nerve signals or thoughts to initiate motion.

But what of machinery that can actually send signals back to the user, registering pressure and stimulation? That’s what researchers from the University of Georgia have been working on of late, and it has inspired them to create a device that can do the job of the largest human organ of them all – our skin. Back in April, they announced that they had successfully created a brand of “smart skin” that is sensitive enough to rival the real thing.

smart-skin_610x407In essence, the skin is a transparent, flexible arrays that uses 8000 touch-sensitive transistors (aka. taxels) that emit electricity when agitated. Each of these comprises a bundle of some 1,500 zinc oxide nanowires, which connect to electrodes via a thin layer of gold, enabling the arrays to pick up on changes in pressure as low as 10 kilopascals, which is what human skin can detect.

Mimicking the sense of touch electronically has long been the dream researchers, and has been accomplished by measuring changes in resistance. But the team at Georgia Tech experimented with a different approach, measuring tiny polarization changes when piezoelectric materials such as zinc oxide are placed under mechanical stress. In these transistors, then, piezoelectric charges control the flow of current through the nanowires.

nanowiresIn a recent news release, lead author Zhong Lin Wang of Georgia Tech’s School of Materials Science and Engineering said:

Any mechanical motion, such as the movement of arms or the fingers of a robot, could be translated to control signals. This could make artificial skin smarter and more like the human skin. It would allow the skin to feel activity on the surface.

This, when integrated to prosthetics or even robots, will allow the user to experience the sensation of touch when using their bionic limbs. But the range of possibilities extends beyond that. As Wang explained:

This is a fundamentally new technology that allows us to control electronic devices directly using mechanical agitation. This could be used in a broad range of areas, including robotics, MEMS, human-computer interfaces, and other areas that involve mechanical deformation.

prostheticNot the first time that bionic limbs have come equipped with electrodes to enable sensation. In fact, the robotic hand designed by Silvestro Micera of the Ecole Polytechnique Federale de Lausanne in Switzerland seeks to do the same thing. Using electrodes that connect from the fingertips, palm and index finger to the wearer’s arm nerves, the device registers pressure and tension in order to help them better interact with their environment.

Building on these two efforts, it is easy to get a glimpse of what future prosthetic devices will look like. In all likelihood, they will be skin-colored and covered with a soft “dermal” layer that is studded with thousands of sensors. This way, the wearer will be able to register sensations – everything from pressure to changes in temperature and perhaps even injury – from every corner of their hand.

As usual, the technology may have military uses, since the Defense Advanced Research Projects Agency (DARPA) is involved. For that matter, so is the U.S. Air Force, the U.S. Department of Energy, the National Science Foundation, and the Knowledge Innovation Program of the Chinese Academy of Sciences are all funding it. So don’t be too surprised if bots wearing a convincing suit of artificial skin start popping up in your neighborhood!

terminator2Source: news.cnet.com