News from Space: Insight Lander and the LDSD

mars-insight-lander-labelledScientists have been staring at the surface of Mars for decades through high-powered telescopes. Only recently, and with the help of robotic missions, has anyone been able to look deeper. And with the success of the Spirit, Opportunity and Curiosity rovers, NASA is preparing to go deeper. The space agency just got official approval to begin construction of the InSight lander, which will be launched in spring 2016. While there, it’s going to explore the subsurface of Mars to see what’s down there.

Officially, the lander is known as the Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, and back in May, NASA passed the crucial mission final design review. The next step is to line up manufacturers and equipment partners to build the probe and get it to Mars on time. As with many deep space launches, the timing is incredibly important – if not launched at the right point in Earth’s orbit, the trip to Mars would be far too long.

Phoenix_landingUnlike the Curiosity rover, which landed on the Red Planet by way of a fascinating rocket-powered sky crane, the InSight will be a stationary probe more akin to the Phoenix lander. That probe was deployed to search the surface for signs of microbial life on Mars by collecting and analyzing soil samples. InSight, however, will not rely on a tiny shovel like Phoenix (pictured above) – it will have a fully articulating robotic arm equipped with burrowing instruments.

Also unlike its rover predecessors, once InSight sets down near the Martian equator, it will stay there for its entire two year mission – and possibly longer if it can hack it. That’s a much longer official mission duration than the Phoenix lander was designed for, meaning it’s going to need to endure some harsh conditions. This, in conjunction with InSight’s solar power system, made the equatorial region a preferable landing zone.

mars-core_bigFor the sake of its mission, the InSight lander will use a sensitive subsurface instrument called the Seismic Experiment for Interior Structure (SEIS). This device will track ground motion transmitted through the interior of the planet caused by so-called “marsquakes” and distant meteor impacts. A separate heat flow analysis package will measure the heat radiating from the planet’s interior. From all of this, scientists hope to be able to shed some light on Mars early history and formation.

For instance, Earth’s larger size has kept its core hot and spinning for billions of years, which provides us with a protective magnetic field. By contrast, Mars cooled very quickly, so NASA scientists believe more data on the formation and early life of rocky planets will be preserved. The lander will also connect to NASA’s Deep Space Network antennas on Earth to precisely track the position of Mars over time. A slight wobbling could indicate the red planet still has a small molten core.

If all goes to plan, InSight should arrive on Mars just six months after its launch in Spring 2016. Hopefully it will not only teach us about Mars’ past, but our own as well.

LDSDAfter the daring new type of landing that was performed with the Curiosity rover, NASA went back to the drawing table to come up with something even better. Their solution: the “Low-Density Supersonic Decelerator”, a saucer-shaped vehicle consisting of an inflating buffer that goes around the ship’s heat shield. It is hopes that this will help future spacecrafts to put on the brakes as they enter Mar’s atmosphere so they can make a soft, controlled landing.

Back in January and again in April, NASA’s Jet Propulsion Laboratory tested the LDSD using a rocket sled. Earlier this month, the next phase was to take place, in the form of a high-altitude balloon that would take it to an altitude of over 36,600 meters (120,000 feet). Once there, the device was to be dropped from the balloon sideways until it reached a velocity of four times the speed of sound. Then the LDSD would inflate, and the teams on the ground would asses how it behaved.

LDSD_testUnfortunately, the test did not take place, as NASA lost its reserved time at the range in Hawaii where it was slated to go down. As Mark Adler, the Low Density Supersonic Decelerator (LDSD) project manager, explained:

There were six total opportunities to test the vehicle, and the delay of all six opportunities was caused by weather. We needed the mid-level winds between 15,000 and 60,000 feet [4,500 meters to 18,230 meters] to take the balloon away from the island. While there were a few days that were very close, none of the days had the proper wind conditions.

In short, bad weather foiled any potential opportunity to conduct the test before their time ran out. And while officials don’t know when they will get another chance to book time at the U.S. Navy’s Pacific Missile Range in Kauai, Hawaii, they’re hoping to start the testing near the end of June. NASA emphasized that the bad weather was quite unexpected, as the team had spent two years looking at wind conditions worldwide and determined Kauai was the best spot for testing their concept over the ocean.

If the technology works, NASA says it will be useful for landing heavier spacecraft on the Red Planet. This is one of the challenges the agency must surmount if it launches human missions to the planet, which would require more equipment and living supplies than any of the rover or lander missions mounted so far. And if everything checks out, the testing goes as scheduled and the funding is available, NASA plans to use an LDSD on a spacecraft as early as 2018.

And in the meantime, check out this concept video of the LDSD, courtesy of NASA’s Jet Propulsion Laboratory:


Sources:
universetoday.com, (2), extremetech.com

NASA’s Proposed Warp-Drive Visualized

ixs-enterpriseIt’s no secret that NASA has been taking a serious look at Faster-Than-Light (FTL) technology in recent years. It began back in 2012 when Dr Harold White, a team leader from NASA’s Engineering Directorate, announced that he and his team had begun work on the development of a warp drive. His proposed design, an ingenious re-imagining of an Alcubierre Drive, may eventually result in an engine that can transport a spacecraft to the nearest star in a matter of weeks — and all without violating Einstein’s law of relativity.

In the spirit of this proposed endeavor, White chose to collaborate with an artist to visualize what such a ship might look like. Said artist, Mark Rademaker, recently unveiled the fruit of this collaboration in the form of a series of concept images. At the heart of them is a sleek ship nestled at the center of two enormous rings that create the warp bubble. Known as the IXS Enterprise, the ship has one foot in the world of science fiction, but the other in the realm of hard science.

ixs-enterprise-0The idea for the warp-drive comes from the work published by Miguel Alcubierre in 1994. His version of a warp drive is based on the observation that, though light can only travel at a maximum speed of 300,000 km/sec (186,000 miles per second, aka. c), spacetime itself has a theoretically unlimited speed. Indeed, many physicists believe that during the first seconds of the Big Bang, the universe expanded at some 30 billion times the speed of light.

The Alcubierre warp drive works by recreating this ancient expansion in the form of a localized bubble around a spaceship. Alcubierre reasoned that if he could form a torus of negative energy density around a spacecraft and push it in the right direction, this would compress space in front of it and expand space behind it. As a result, the ship could travel at many times the speed of light while the ship itself sits in zero gravity – hence sparing the crew from the effects of acceleration.

alcubierre-warp-drive-overviewUnfortunately, the original maths indicated that a torus the size of Jupiter would be needed, and you’d have to turn Jupiter itself into pure energy to power it. Worse, negative energy density violates a lot of physical limits itself, and to create it requires forms of matter so exotic that their existence is largely hypothetical. In short, what was an idea proposed to circumvent the laws of physics itself fell prey to their limitations.

However, Dr Harold “Sonny” White of NASA’s Johnson Space Center reevaluated Alcubierre’s equations and made adjustments that corrected for the required size of the torus and the amount of energy required. In the case of the former, White discovered that making the torus thicker, while reducing the space available for the ship, allowed the size of it to be greatly decreased – from the size of Jupiter down to a width of 10 m (30 ft), roughly the size of the Voyager 1 probe.

alcubierre-warp-drive-overviewIn the case of the latter, oscillating the bubble around the craft would reduce the stiffness of spacetime, making it easier to distort. This would reduce the amount of energy required by several orders of magnitude, for a ship traveling ten times the speed of light. According to White, with such a setup, a ship could reach Alpha Centauri in a little over five months. A crew traveling on a ship that could accelerate to just shy of the speed of light be able to make the same trip in about four and a half years.

Rademaker’s renderings reflect White’s new calculations. The toruses are thicker and, unlike the famous warp nacelles on Star Trek’s Enterprise, their design is the true function of hurling the craft between the stars. Also, the craft, which is divided into command and service modules, fits properly inside the warp bubble. There are some artistic additions, such as some streamlining, but no one said an interstellar spaceship couldn’t be functional and pretty right?

ixs-enterprise-2For the time being, White’s ideas can only be tested on special interferometers of the most exacting precision. Worse, the dependence of the warp on negative energy density is a major barrier to realization. While it can, under special circumstances, exist at a quantum level, in the classical physical world that this ship must travel through, it cannot exist except as a property of some form of matter so exotic that it can barely be said to be capable of existing in our universe.

Though no one can say with any certainty when such a system might be technically feasible, it doesn’t hurt to look ahead and dream of what may one day be possible. And in the meantime, you can check out Rademaker’s entire gallery by going to his Flickr account here. And be sure to check out the video of Dr. White explaining his warp-drive concept at SpaceVision 2013:


Sources:
gizmag.comIO9.com, cnet.com
, flickr.com

A Cleaner Future: Contaminant-Detecting Water Sensor

https://i0.wp.com/f.fastcompany.net/multisite_files/fastcompany/imagecache/1280/poster/2014/05/3030503-poster-p-jack-and-beaker.jpgJack Andraka is at it again! For those who follow this blog (or subscribe to Forbes or watch TED Talks), this young man probably needs no introduction. But if not, then you might not known that Andraka is than the young man who – at 15 years of age – invented an inexpensive litmus test for detecting pancreatic cancer. This invention won him first prize at the 2012 Intel International Science and Engineering Fair (ISEF), and was followed up less than a year later with a handheld device that could detect cancer and even explosives.

And now, Andraka is back with yet another invention: a biosensor that can quickly and cheaply detect water contaminants. His microfluidic biosensor, developed with fellow student Chloe Diggs, recently took the $50,000 first prize among high school entrants in the Siemens We Can Change the World Challenge. The pair developed their credit card-sized biosensor after learning about water pollution in a high school environmental science class.

andraka_diggsAs Andraka explained:

We had to figure out how to produce microfluidic [structures] in a classroom setting. We had to come up with new procedures, and we custom-made our own equipment.

According to Andraka, the device can detect six environmental contaminants: mercury, lead, cadmium, copper, glyphosate, and atrazine. It costs a dollar to make and takes 20 minutes to run, making it 200,000 times cheaper and 25 times more efficient than comparable sensors. At this point, make scaled-down versions of expensive sensors that can save lives has become second nature to Andraka. And in each case, he is able to do it in a way that is extremely cost-effective.

andraka-inlineFor example, Andraka’s litmus test cancer-detector was proven to be 168 times faster than current tests, 90% accurate, and 400 times more sensitive. In addition, his paper test costs 26,000 times less than conventional methods – which include  CT scans, MRIs, Ultrasounds, or Cholangiopancreatography. These tests not only involve highly expensive equipment, they are usually administered only after serious symptoms have manifested themselves.

In much the same vein, Andraka’s handheld cancer/explosive detector was manufactured using simple, off-the-shelf and consumer products. Using a simple cell phone case, a laser pointer and an iPhone camera, he was able to craft a device that does the same job as a raman spectrometer, but at a fraction of the size and cost. Whereas a conventional spectrometer is the size of a room and costs around $100,000, his handheld device is the size of a cell phone and costs $15 worth of components.

andraka_seimensAs part of the project, Diggs and Andraka also developed an inexpensive water filter made out of plastic bottles. Next, they hope to do large-scale testing for their sensor in Maryland, where they live. They also want to develop a cell-phone-based sensor reader that lets users quickly evaluate water quality and post the test results online. Basically, its all part of what is fast becoming the digitization of health and medicine, where the sensors are portable and the information can be uploaded and shared.

This isn’t the only project that Andraka has been working on of late. Along with the two other Intel Science Fair finalists – who came together with him to form Team Gen Z – he’s working on a handheld medical scanner that will be entered in the Tricorder XPrize. This challenge offers $10 million to any laboratory or private inventors that can develop a device that can diagnose 15 diseases in 30 patients over a three-day period. while still being small enough to carry.

For more information on this project and Team Gen Z, check out their website here. And be sure to watch their promotional video for the XPrize competition:


Source:
fastcoexist.com

The Future is Here: Google’s New Self-Driving Car

google-new-self-driving-car-prototype-640x352Google has just unveiled its very first, built-from-scratch-in-Detroit, self-driving electric robot car. The culmination of years worth of research and development, the Google vehicle is undoubtedly cuter in appearance than other EV cars – like the Tesla Model S or Toyota Prius. In fact, it looks more like a Little Tikes plastic car, right down to smiley face on the front end. This is no doubt the result of clever marketing and an attempt to reduce apprehension towards the safety or long-term effects of autonomous vehicles.

The battery-powered electric vehicle has as a stop-go button, but no steering wheel or pedals. It also comes with some serious expensive hardware – radar, lidar, and 360-degree cameras – that are mounted in a tripod on the roof. This is to ensure good sightlines around the vehicle, and at the moment, Google hasn’t found a way to integrate them seamlessly into the car’s chassis. This is the long term plan, but at the moment, the robotic tripod remains.

google-self-driving-car-prototype-concept-artAs the concept art above shows, the eventual goal appears to be to to build the computer vision and ranging hardware into a slightly less obtrusive rooftop beacon. In terms of production, Google’s short-term plan is to build around 200 of these cars over the next year, with road testing probably restricted to California for the next year or two. These first prototypes are mostly made of plastic with battery/electric propulsion limited to a max speed of 25 mph (40 kph).

Instead of an engine or “frunk,” there’s a foam bulkhead at the front of the car to protect the passengers. There’s just a couple of seats in the interior, and some great big windows so passengers can enjoy the view while they ride in automated comfort. In a blog post on their website, Google expressed that their stated goal is in “improving road safety and transforming mobility for millions of people.” Driverless cars could definitely revolutionize travel for people who can’t currently drive.

google_robotcar_mapImproving road safety is a little more ambiguous, though. It’s generally agreed that if all cars on the road were autonomous, there could be some massive gains in safety and efficiency, both in terms of fuel usage and being able to squeeze more cars onto the roads. In the lead-up to that scenario, though, there are all sorts of questions about how to effectively integrate a range of manual, semi- and fully self-driving vehicles on the same roadways.

Plus, there are the inevitable questions of practicality and exigent circumstances. For starters, having no other controls in the car but a stop-go button may sound simplified and creative, but it creates problems. What’s a driver to do when they need to move the car just a few feet? What happens when a tight parking situation is taking place and the car has to be slowly moved to negotiate it? Will Google’s software allow for temporary double parking, or off-road driving for a concert or party? google_robotca

Can you choose which parking spot the car will use, to leave the better/closer parking spots for someone with special needs (i.e. the elderly or physically disabled)? How will these cars handle the issue of “right of way” when it comes to pedestrians and other drivers? Plus, is it even sensible to promote a system that will eventually make it easier to put more cars onto the road? Mass transit is considered the best option for a cleaner, less cluttered future. Could this be a reason not to develop such ideas as the Hyperloop and other high-speed maglev trains?

All good questions, and ones which will no doubt have to be addressed as time goes on and production becomes more meaningful. In the meantime, there are no shortage of people who are interested in the concept and hoping to see where it will go. Also, there’s plenty of people willing to take a test drive in the new robotic car. You can check out the results of these in the video below. In the meantime, try not to be too creeped out if you see a car with a robotic tripod on top and a very disengaged passenger in the front seat!


Sources:
extremetech.com, scientificamerican.com

Reinstating Net Neutrality: New Bill Before US Congress

cap-hillA new “net neutrality” bill is on its way towards Congress, one which seeks to reinstate the free and open nature of the net – something that has been under fire in recent years. And one week ago, Senator Patrick Leahy of Vermont and Representative Doris Matsui of California took another decisive step when they announced that they will propose a bill to stop the Federal Communications Commission from allowing paid “fast lanes” on the internet.

In short, the proposed bill demands that the FCC to use whatever authority it sees fit to make sure that Internet providers don’t speed up certain types of content (like Netflix videos) at the expense of others (like e-mail). It wouldn’t give the commission new powers, but the bill – known as the Online Competition and Consumer Choice Act – would give the FCC crucial political cover to prohibit what consumer advocates say would harm startup companies and Internet services by requiring them to pay extra fees to ISPs.

Wireless-Internet-1And this past spring, after a federal court struck down the FCC’s existing net neutrality rules – which sought to ensure that ISPs didn’t discriminate against certain internet traffic – the commission proposed a new set of rules that has left many worried that ISPs could start charging web companies like Google and Netflix to deliver their content at faster speeds. Such an arrangement, these sources say, would squeeze out newer and smaller operations that can’t pay the fees.

Leahy and Matsui, both Democrats, are part of a widespread effort to ensure that all web companies, from Google to Netflix to Snapchat, are treated equally on the internet. On the other side, big-name internet service providers such as Comcast and Verizon are fighting to maintain control over how their networks operate. Caught in the middle are internet users who stand to lose if the ISPs create a new internet where its harder for certain services to reach them.

https://i0.wp.com/img.washingtonpost.com/blogs/the-switch/files/2014/06/Screen-Shot-2014-06-16-at-18.12.56.jpgAfter holding a hearing on net neutrality in Vermont this past summer, Leahy came to an invariable conclusion:

Americans are speaking loud and clear. They want an Internet that is a platform for free expression and innovation, where the best ideas and services can reach consumers based on merit rather than based on a financial relationship with a broadband provider.

Though FCC chairman Ted Wheeler has claimed that internet fast lanes would be “commercially unreasonable” and therefore forbidden under its own proposed new rules, critics worry that the rules are too broad and would allow for loopholes as to what counts as commercially reasonable activity. Since the new rules were proposed, protests have taken place in front of the FCC’s offices, massive internet petitions have been mounted, and an epic rant was made by Last Week Tonight host John Oliver.

https://i0.wp.com/www.wired.com/images_blogs/threatlevel/2014/01/topic_net-neutrality.pngThe new bill would provide a mandate regarding how the FCC deals with any sort of paid prioritization, but it wouldn’t reclassify providers. Also, the new bill would only apply to connections from internet service providers to customers’ homes, commonly referred to as last mile connections. It wouldn’t pertain to “peering”, the deals governing the ways that internet service providers connect with each other or with content providers like Netflix and Google.

Despite these limitations, Public Knowledge supports the proposed legislation. As vice president of government affairs Chris Lewis said in a statement:

This bill sends a clear signal to the FCC that fast lanes and paid prioritization could endanger the internet ecosystem as we know it. The reason we have seen so much financial investment and innovation online is because the playing field for new entrepreneurs is level. As the FCC continues to evaluate new net neutrality rules, it’s important they understand that Americans want an internet that everyone can succeed in, not just the companies with enough money to pay a toll to ISPs.

https://i0.wp.com/www3.pcmag.com/media/images/425188-net-neutrality.pngThe bill may face serious challenges, however. Republicans control the House and have proposed their own bill to block the FCC from reclassifying internet service providers. In this respect, net neutrality is dividing lawmakers along partisan lines, and Republicans are not expected to support the proposed Leahy-Matsui bill. But in theory, a bipartisan agreement could be reached, especially since the Leahy-Matsui bill leaves reclassification off the table.

And given the level of public pressure on law makers and regulators to protect the function of the internet, it’s too early to count this or any other legislation that addressing the issue of neutrality out. Network neutrality has become a hot button issue, much like domestic surveillance and data collection. And the people are sending a clear message: they want the internet to be a level playing field and won’t rest until the rules clearly reflect that.

Sources: wired.com, washingtonpost.com

Computex 2014

https://download.taiwantradeshows.com.tw/files/model/photo/CP/2014/PH00013391-2.jpgEarlier this month, Computex 2014 wrapped up in Taipei. And while this trade show may not have all the glitz and glamor of its counterpart in Vegas (aka. the Consumer Electronics Show), it is still an important launch pad for new IT products slated for release during the second half of the year. Compared to other venues, the Taiwanese event is more formal, more business-oriented, and for those people who love to tinker with their PCs.

For instance, it’s an accessible platform for many Asian vendors who may not have the budget to head to Vegas. And in addition to being cheaper to set up booths and show off their products, it gives people a chance to look at devices that wouldn’t often be seen in the western parts of the world. The timing of the show is also perfect for some manufacturers. Held in June, the show provides a fantastic window into the second half of the year.

https://i0.wp.com/www.lowyat.net/wp-content/uploads/2014/06/140602dellcomputex.jpgFor example, big name brands like Asus typically use the event to launch a wide range of products. This year, this included such items as the super-slim Asus Book Chi and the multi-mode Book V, which like their other products, have demonstrated that the company has a flair for innovation that easily rivals the big western and Korean names. In addition, Intel has been a long stalwart at Computex, premiered its fanless reference design tablet that runs on the Llama Mountain chipset.

And much like CES, there were plenty of cool gadgets to be seen. This included a GPS tracker that can be attached to a dog collar to track a pet’s movements; the Fujitsu laptop, a hardy new breed of gadget that showcases Japanese designers’ aim to make gear that are both waterproof and dustproof; the Rosewill Chic-C powerbank that consists of 1,000mAh battery packs that attach together to give additional power and even charge gadgets; and the Altek Cubic compact camera that fits in the palm of the hand.

https://i0.wp.com/twimages.vr-zone.net/2013/12/altek-Cubic-1.jpgAnd then there was the Asus wireless storage, a gadget that looks like an air freshener, but is actually a wireless storage device that can be paired with a smartphone using near-field communication (NFC) technology – essentially being able to transfer info simply by bringing a device into near-proximity with it. And as always, there were plenty of cameras, display headsets, mobile devices, and wearables. This last aspect was particularly ever-present, in the form of look-alike big-name wearables.

By and all large, the devices displayed this year were variations on a similar theme: wrist-mounted fitness trackers, smartwatches, and head-mounted smartglasses. The SiMEye smartglass display, for example, was every bit inspired by Google Glass, and even bears a strong resemblance. Though the show was admittedly short on innovation over imitation, it did showcase a major trend in the computing and tech industry.

http://img.scoop.it/FWa9Z463Q34KPAgzjElk3Tl72eJkfbmt4t8yenImKBVvK0kTmF0xjctABnaLJIm9In his keynote speech, Microsoft’s Nick Parker talked about the age of ubiquitous computing, and the “devices we carry on us, as opposed to with us.” What this means is, we may very well be entering a PC-less age, where computing is embedded in devices of increasingly diminished size. Eventually, it could even be miniaturized to the point where it is stitched into our clothing as accessed through contacts, never mind glasses or headsets!

Sources: cnet.com, (2), (3), computextaipei.com

First Ever Organism with “Alien” DNA

alien-dna-640x353Normal DNA, which is characterized by the double helix and its the four bases that bond it together – known as T, G, A, and C – is at the heart of all living organisms. While permutations and differences exist between species, this basic structure has existed unchanged for billions of years. That is, until now. This past May, researchers announced that they had created the first ever organism with synthetic DNA that has two new bases – X and Y. Mary Shelley and H.G. Wells must be turning over in their graves, as scientists are officially playing God now!

This landmark study, 15 years in the making, was carried out by scientists at the Scripps Research Institute and published in Nature today under the title “A semi-synthetic organism with an expanded genetic alphabet”. In normal DNA, the four bases combine in predictable ways. A always bonds with T, and C always bonds with G, creating a fairly simple “language” of base pairs — ATCGAAATGCC, etc. Combine a few dozen base pairs together in a long strand of DNA and you then have a gene, which tells the organism how to produce a certain protein.

DNA-MicroarrayIf you know the sequence of letters down one strand of the helix, you always know what other letter is. This “complementarity” is the fundamental reason why a DNA helix can be split down the middle, and then have the other half perfectly recreated. In this new study, the Scripps scientists found a method of inserting a new base pair into the DNA of an e. coli bacterium. These two new bases are represented by the letters X and Y, but the actual chemicals are described as “d5SICS” and “dNaM.”

A previous in vitro (test tube) study had shown that these two chemicals were compatible with the enzymes that split and copy DNA. For the purposes of this study, the scientists began by genetically engineering an e. coli bacterium to allow the new chemicals (d5SICS and dNaM) through the cell membrane. Then they inserted a DNA plasmid (a small loop of DNA) that contained a single XY base pair into the bacterium.

dnaheadAs long as the new chemicals were available, the bacterium continued to reproduce normally, copying and passing on the new DNA, alien plasmid and all, and continued to carry on flawlessly for almost a week. For now, the XY base pair does nothing; it just sits there in the DNA, waiting to be copied. In this form, it could be used as biological data storage which, as a new form of biocomputing, could result in hundreds of terabytes of data being stored in a single gram of synthetic, alien DNA. 

Floyd Romesberg, who led the research, has much grander plans:

If you read a book that was written with four letters, you’re not going to be able to tell many interesting stories. If you’re given more letters, you can invent new words, you can find new ways to use those words and you can probably tell more interesting stories.

Now his target is to find a way of getting the alien DNA to actually do something, such as producing amino acids (and thus proteins) that aren’t found in nature. If Romesberg and his colleagues can crack that nut, then it will suddenly become possible to engineer cells that produce proteins that target cancer cells, or special amino acids that help with fluorescent microscopy, or new drugs/gene therapies that do weird and wonderful things.

dna_cancerUltimately it may even be possible to create a wholly synthetic organism with DNA that contains dozens (or hundreds) of different base pairs that can produce an almost infinitely complex library of amino acids and proteins. At that point, we’d basically be rewriting some four billion years of evolution. The organisms and creatures that would arise would be unrecognizable, and be capable of just about anything that a researcher (or mad scientist) could dream up.

In the future, this breakthrough should allow for the creation of highly customized organisms – bacteria, animals, humans – that behave in weird and wonderful ways that mundane four-base DNA would never allow. At the same time, it raises ethical dilemmas and fears that may be well founded. But such is the nature of breakthroughs. The potential for harm and good are always presumably equal when they are firts conceived.

Source: extremetech.com

Powered by the Sun: Solar City and Silevo

solar2Elon Musk is at it again, this time with clean, renewable energy. Just yesterday, he announced that Solar City (the solar installation company that he chairs) plans to acquire a startup called Silevo. This producer of high-efficiency panels was acquired for $200 million (plus up to $150 million more if the company meets certain goals), and Musk now plans to build a huge factory to produce their panels as part of a strategy that will make solar power “way cheaper” than power from fossil fuels.

Solar City is one of the country’s largest and fastest-growing solar installers, largely as a result of its innovative business model. Conceived by Musk as another cost-reducing gesture, the company allows homeowners and businesses to avoid any up-front cost. If its plans pan out, it will also become a major manufacturer of solar panels, with by far the largest factory in the U.S.

https://i0.wp.com/images.fastcompany.com/upload/620-most-innovative-companies-solar-city.jpgThe acquisition makes sense given that Silevo’s technology has the potential to reduce the cost of installing solar panels, Solar City’s main business. But the decision to build a huge factory in the U.S. seems daring – especially given the recent failures of other U.S.-based solar manufacturers in the face of competition from Asia. Ultimately, however, Solar City may have little choice, since it needs to find ways to reduce costs to keep growing.

Silevo produces solar panels that are roughly 15 to 20 percent more efficient than conventional ones thanks to the use of thin films of silicon – which increase efficiency by helping electrons flow more freely out of the material – and copper rather than silver electrodes to save costs. Higher efficiency can yield big savings on installation costs, which often exceed the cost of the panels themselves, because fewer panels are needed to generate a given amount of power.

http://gigaom2.files.wordpress.com/2011/10/silevo-single-buss-bar-cell.jpgSilevo isn’t the only company to produce high-efficiency solar cells. A version made by Panasonic is just as efficient, and SunPower makes ones that are significantly more so. But Silevo claims that its panels could be made as cheaply as conventional ones if they could scale their production capacity up from their current 32 megawatts to the factory Musk has planned, which is expected to produce 1,000 megawatts or more.

The factory plan mirrors an idea Musk introduced at one of his other companies, Tesla Motors, which is building a huge “gigafactory” that he says will reduce the cost of batteries for electric cars. The proposed plant would have more lithium-ion battery capacity than all current factories combined. And combined with Musk’s release of the patents, which he hopes will speed development, it is clear Musk has both eyes on making clean technology cheaper.

Not sure, but I think it’s fair to say Musk just became my hero! Not only is he all about the development of grand ideas, he is clearly willing to sacrifice profit and a monopolistic grasp on technologies in order to see them come to fruition.

Source: technologyreview.com