Biotech Breakthrough: Fully-Functioning Organ Grown

artificial-thymusOrgan transplants are one of the greatest medical advances of the 20th century. Where patients once faced disability or even death, they’ve been given a new lease on life in the form of donated organs. The problem is that the supply of suitable donor organs has always been in a state of severe shortage. Not only is it entirely dependent on accident victims who have signed their organ donor card, there is also the issue of genetic suitability.

For decades, scientists have worked on producing lab-grown organs to pick up the slack left by the donor system. The research has yielded some positive results in the form of simple organs, such as the artificial esophagus and “mini-kidneys.” Nevertheless, the creation of whole, complex, functional organs that can be swapped for damaged or destroyed ones has remained out of reach. That is, until now.

fibroblastScientists at the University of Edinburgh have grown a fully-functional organ inside a mouse, a breakthrough that opens up the possibility of one day manufacturing compatible organs for transplant without the need for donors. Using mouse embryo cells, scientists at the MRC Centre for Regenerative Medicine created an artificial thymus gland with the same structure and function as an adult organ.

The University of Edinburgh team produced the artificial thymus gland using a technique that the scientists call “reprogramming.” It involves fibroblast cells, which form connective tissue in animals, being removed from a mouse embryo and then treated with a protein called FOXN1 to change them into thymic epithelial cells (TEC). These were then mixed with other thymus cells and transplanted into living mice by grafting them to the animal’s kidneys.

T-cellThen, over a period of four weeks, the cells grew into a complete, functioning thymus gland that can produce T cells – an important part of the immune system. According to the scientists, this development goes beyond previous efforts because the thymus serves such a key part in protecting the body against infection and in eliminating cancer cells. This is clearly the first step on the road towards complete organ development.

The team is currently working on refining the reprogramming technique in the hope of developing a practical medical procedure, such as creating bespoke thymus glands made to match a patient’s own T cells. They see the development of a lab-grown thymus as a way of treating cancer patients whose immune system has been compromised by radiation or chemotherapy, and children born with malfunctioning thymuses.

bioprintingAccording to Rob Buckle, Head of Regenerative Medicine at the MRC, the potential is tremendous and far-reaching:

Growing ‘replacement parts’ for damaged tissue could remove the need to transplant whole organs from one person to another, which has many drawbacks – not least a critical lack of donors. This research is an exciting early step towards that goal, and a convincing demonstration of the potential power of direct reprogramming technology, by which one cell type is converted to another. However, much more work will be needed before this process can be reproduced in the lab environment, and in a safe and tightly controlled way suitable for use in humans.

Combined with “bioprinting” – where stem cells are printed into organs using a 3-D printer – organs transplants could very well evolve to the point where made-to-order replacements are fashioned from patient’s own genetic material. This would not only ensure that there is never any shortages or waiting lists, but that there would be no chance of incompatibility or donor rejection.

Another step on the road to clinical immortality! And be sure to check out this video of the artificial thymus gland being grown, courtesy of the Medical Research Council:


Source:
gizmag.com, crm.ed.ca.uk

Food From Space: NASA’s 3-D Pizza Printer (Cont’d)

3DpizzaLast Spring, NASA made headlines when it announced that its was granting a developer $125,000 to build a prototype 3-D food printer that would be able to create pizzas and other tasty food items. This is part of NASA’s larger effort to bring 3-D printing into space so that astronauts could meet their nutritional and supply needs on site.

And according to this most recent video, courtesy of Anjan Contractor, it seems that the project had begun to bear fruit. Contractor is the lead engineer behind the printer design, and was employed by NASA’s Systems & Materials Research Corporation to complete a printer that could provide astronauts a nutritious, comforting alternative to the canned and freeze-dried prepackaged foods they’re currently stuck with.

3-D_pizzaAs you can see from the video, the machine does a pretty good job of creating a rectangular, margherita pizza – albeit with some minor spillage. And, according to Contractor, the device takes about 70 seconds to cook the pizza after the printer nozzles were finished laying down the liquid crust-precursor, followed by the tomato sauce and liquid cheese.

If NASA decides it wants to move ahead with the printer, it will still be many, many years before astronauts are eating 3-D printed pizza and other such delectables in space. But this proof of concept is a major step in that direction, and NASA is likely to see its project through to completion before attempting any long-range missions (such as to Mars).

After all, astronauts being in space for extended periods of time is the very reason alternatives are being contemplated in the first place. And in the meantime, check out this video of Contractor’s printer as it generates a pizza:


Source: fastcoexist.com

The Future is Here: Cleaning Micro-Robots

mab1No one likes the idea of having to clean their homes or living spaces. Its time consuming, repetitive, and never seems to end. But thanks to some new concepts, which were featured this year at the Electrolux Design Labs competition, a day may be coming when all such maintenance can be handled by machines, and not the large, bulky kinds that are often featured in sci-fi shows and novels.

Instead, the new concept for household cleaning robots focuses on the growing field of swarm robotics. That was the concept behind Mab, a series to tiny robots that fly around the house and determine what needs cleaning. Designed by Adrian Perez Zapata, a 23-year old student from Bolivia, the Mab concept utilizes swarm programming to allow all 908 of its insect-like robots to carry out group functions.

mabEach of the tiny robots lives within a spherical core (picture above), and once they are released, they venture out and depositing tiny amounts of water and cleaning solution onto surfaces that have been identified as dirty. Then, having sucked up the dirty liquid, the swarm returns to their core where they unload and await further instructions or the next schedules cleaning cycle.

The robots fly around by means of several tiny, spinning propellers, and their energy comes from built-in solar panels and a battery unit that is recharged whenever they are in the core unit. Zapata claimed that he derived much of his inspiration for the design from the “robo-bee” research being conducted at Harvard, but initially got the idea from watching actual insects at work one day:

I was in my university gardens when I observed the controlled flight of bees pollinating a flower, and how magical it is to see swarms of bees working together. My concept Mab only requires a short initial configuration to function autonomously, so you could arrive home and see a swarm of mini-robots roaming around cleaning independently. This means you could sit back and relax, as you observe with great astonishment the little Mab fairies working their magic.

Mab2Zapata’s design won first place in the 2013 Electrolux Design Labs competition, an annual contest created to encourage designer students from all over the world to come up with ideas and solutions for future living. This year’s theme was Inspired Urban Living, featuring three focus areas to choose from: Social Cooking, Natural Air and Effortless Cleaning, and drew some rather impressive ideas!

For example, second place went to Luiza Silva of Brazil for her design concept known as Atomium, a home 3-D printer for food that uses molecular ingredients to construct food layer by layer. You simply draw the shape of the food you would like to eat and show it to the Atomium, which then scans the image and prints the specified food in the desired shape.

atomiumThird place went to Jeabyun Yeon from South Korea for the Breathing Wall, an “air cleaning concept which pulsates and changes shape as it cleans the air.” Inspired by fish gills, It can also be customized to suit individual needs as it scents the air you breathe and changes color according to your choice.

After that, the finalists included: Nutrima, a device for instantly assessing food’s nutritional value and possible toxicity; Kitchen Hub, an app to keep track of food in the fridge, encourage healthy eating, and reduce waste; OZ-1, an air purifier worn as a necklace; 3F, a shape-shifting autonomous vacuum cleaner; and Global Chef, a hologramatic device for bringing virtual guests to the dinner-table.

breathing_wallTaken together, these small bits of innovation are indicative of a much larger trend, where touchscreens, 3-D printing, scanners, swarm robots, and smart environments address our needs in ways that are intuitive, automated, efficient, and very user friendly. The only downside… they are likely to make us ever lazier than we already are!

In the meantime, check out these videos of the Mab, Atomium, Breathing Wall, and other cool inventions that were featured at the 2013 Electrolux Design Labs competition:

Mab:

Atomium:

Breathing Wall:

Nurtima:

Kitchen Hub:

OZ-1:

3F:

Global Chef:


Sources: fastcoexist.com, (2), electroluxdesignlabs.com

3-D Printing Now Offering Cartiledge!

3-D cartilageSince it’s development as a viable technology, 3-D printing has presented us with some very interesting possibilities. In addition to objects made of plastic, metal, and possibly meat (a proposed idea still in development), printers may be used to create something else entirely: cartilage! Yes, in a recent announcement, scientists at the Wake Forest Institute of Regenerative Medicine claimed to have pioneered an approach to replace damaged cartilage.

The process combines two low-cost techniques – electronspinning and inkjet/bioprinting – to create the world’s first class of synthetic implantable biomaterial. The first is a method that that is used to create synthetic, polymer-based nanoscale-fibrous materials for implants and wound dressing, while the second is currently used to create tissue and organ material.

cartilage1Each process is viable, but comes with its own share of shortcomings. Electrospun materials typically don’t have the ability to promote cellular growth, nor do they have the flexibility needed for cartilage replacement. And inkjet printed materials lack the structure and strength needed to support the loads that cartilage carries. But by merging to two systems together, the researchers at Wake Forest to overcome these limitations and create something viable.

Their hybrid approach alternates microscopic layers of electrospun fiber and printed, living cartilage cells cultivated from rabbit ears, thus generating an artificial cartilage pad that is suitable for implanting. An eight-week study in mice showed that the implanted pads developed cellular structure similar to natural cartilage, while separate mechanical strength tests demonstrated that it was equivalent to the real thing.

For medical practitioners, the benefits of this breakthrough are obvious. Natural cartilage not only takes a long time to heal, it has almost no ability to regrow itself. At present, doctors rely on approach that combines removing small sections of damaged cartilage with microscopic grafts. However, neither of these methods are effective at restoring the cushioning, lubricating tissue that allows for full range of motion or impact on the limbs. What’s more, the long term effects of bone on bone contact can require eventual joint replacement.

Though the research is still in the early stages, the initial results have been quite positive. With time, and assuming the results continue to be as positive, we could be looking at a cheap and effective way to rehabilitate damaged limbs.

Source: Wired.com

3D Printers Now Available for Retail Purchase

For those familiar with 3D Printing, there’s some good news to be had. It seems that the New York-based manufacturer MakerBot recently announced the creation of a retail version of the technology. Known as the Replicator 2 (a clear shout-out to Star Trek), this new model is an improvement on their prototype, and will be affordable enough for your average corner store to stock.

Selling for $2,199, the Replicator 2 costs about as much as high-end Xerox machine, but can do so much more. According to factory specs, it boasts a 100 micron printing resolution, a build volume of 410 cubic inches (11.2 inches long by 6 inches wide by 6.1 inches high) and comes in a powdered steel frame. Those specs are clear upgrades from those of the older model, which had a 250 micron print resolution, a wooden frame, and a 300-cubic-inch build volume.

Naturally, I imagine that some people are wondering if this in fact the beginning of Replicator technology. Sure, it’s a far cry from a matter compiler that can create food, drinks, and consumer products from scratch, but it is a start, isn’t it? And if what we’ve been told about the cultivation of organic material for printing 3-D meat is true, it won’t be long before various edibles are on the menu. 7-11 is likely to be backed up then, huh? Selling, Slurpies, milk, candy and fresh-printed meat! Oh, the future is… weird!

And for those unfamiliar with 3D printing, check out this video below. It is sure to impress!

 

The Future is Here: The 5-Axis Robot

3D printers are becoming all the rage these days. Machines that can take a computer-generated blueprint and compile an object out of plastic that matches it exactly, what’s not to love about that? But recently, the Japanese company known as Daishin Seki produced a machine that could literally sculpt metal. The concept is pretty much the same: you create a diagram on your computer, upload it to the robot, make sure it’s loaded with a block of metal, and just sit back and let it do its thing.

The initial test of the machine was caught on video, where it turned a block of aluminum into a one-piece motorcycle helmet. Yes, this work of metallic art has no seems, no screws, no separate parts. So its likely to be a hell of a lot more durable than one that was slapped together. Quite impressive. The applications for this growing technology truly are limitless.

However, this does raise some genuine concerns. For one, human machinists can’t keep up with this kind of technology. So really, it is no longer a competition between a human being and a machine, but between two kinds of machines. This new form of computer-assisted design, known as “machining”, stands in contrast to “printing” – i.e. use of a 3D printer. As time goes on, these two methods are likely to compete for consumers and investment, eventually procuring certain niches of the design market. Meanwhile, human machinists will be left behind, with nothing to do but watch and get re-educated on the use of these machines.

Well, no one said “progress” was all sunshine and roses. And the elimination of man-power is one of the hallmarks of high tech. So unless we choose to jam these machines up, we’ll just have to be content to watch them churn out cool stuff, huh? Enjoy the video clip below: