Climate Wars: Cropland Destruction and Improvement

cereals-agriculture-earClimate Change is currently recognized as one of the greatest threats to the stability and well being of the world and its people. But far worse than rising sea levels, unpredictable weather patterns, and an increase in forest fires is the threat that it could have on the global food supply. As our population increases by several billion over the next few decades, these problems will make it even harder to feed everyone.

Up until now, predictions and projections have taken into account rising temperatures, drought, erosion, and longer growing seasons. But a recent study, produced by researchers at MIT and Colorado State University shows that air pollution is also a major factor. In their report, which was published in Nature Climate Change, they claim that ground-level ozone could exacerbate the effects on staple food crops like wheat, soybeans, maize, and rice.

crop_failureUsing two scenarios, researchers mapped out the tandem relationship between pollution and climate change. As a baseline, the MIT and Colorado State researchers estimate that climate change alone will result in a 11% decrease in global crop production. But if countries fail to substantially curb greenhouse gas emissions (the first scenario), the scientists’ model shows that air pollution could trigger an additional 4% of crop failures.

That means that barring significant changes, croplands could see a 15% drop in productivity in the next 40 years. But if countries work to decrease greenhouse gas emissions after 2040, the researchers’ model shows that reduced air pollution could actually offset other negative impacts of warming on crops. They calculate that reduced air pollution in this second scenario could actually increase yields by 3%.

Pollution over Mexico CityThe link between air quality and food production may seem a bit odd, but the logic is actually very straightforward. Basically, the atmosphere forms ozone when sunlight energizes pollutants generated from sources like cars and power plants. Ozone concentrations can also increase at higher temperatures, the kind that already wither temperature-sensitive crops like maize. On top of the heat, increased ozone levels attack pollution-sensitive crops, like wheat.

In the climate scenario where emissions decrease after 2040, the reduction in ozone alone would be enough to increase wheat production in the U.S. and China, the researchers say. Their findings show that reducing air pollution could slow the negative impacts of climate change–even enough to reverse some of them. But some regions will be negatively impacted no matter what.

trafficAs Amos Tai, one of the study’s co-authors, explained:

It appears that South Asia will be the most hard-hit by the combination of warming and ozone trends, where ozone is expected to increase even in the more optimistic scenario. African countries with low domestic production and heavily reliant on food imports are also expected to suffer more in terms of climate-pollution-driven food insecurity.

In short, food production is likely to suffer no matter what, but the effects could be confined to certain areas of the world. With proper management, and the provision of food to these regions from those that are unaffected (say, a pollution-fighting US and China), the worst could be avoided. And there’s some good news coming from another report, which claims we can further increase our food production without taxing the environment.

crop_growthAccording to a new report by researchers at the University of Minnesota’s Institute on the Environment, by focusing efforts to improve food systems on a few specific regions, crops and actions could make it possible to both meet the basic needs of three billion more people while simultaneously decreasing agriculture’s environmental carbon footprint. The report, published in Science back in July, may sound like fantasy, but the argument offered is logical and compelling.

The report focuses on 17 key crops that produce 86 percent of the world’s crop calories and account for most irrigation and fertilizer consumption. It then proposes a set of key actions in three broad areas that have the greatest potential for reducing the environmental impact of agriculture while boosting production. For each, it identifies specific “leverage points” where NGOs, foundations, governments, businesses and citizens can have the greatest impact.

agriculture_indiaThe biggest opportunities cluster in six countries – China, India, U.S., Brazil, Indonesia and Pakistan – along with Europe. As the report’s lead author Paul West, co-director of the Institute on the Environment’s Global Landscapes Initiative, explains:

This paper represents an important next step beyond previous studies that have broadly outlined strategies for sustainably feeding people. By pointing out specifically what we can do and where, it gives funders and policy makers the information they need to target their activities for the greatest good.

Overall, the report identified a number of major areas of opportunity and key leverage points for improving the efficiency and sustainability of global food production. First, there is reducing the “yield gap” – i.e. the difference between potential and actual crop yields – in many parts of the world. Currently, the largest gaps are to be found in Africa, Asia and Eastern Europe, and reducing it by just 50% could provide enough calories to feed 850 million more people.

china agriculture researchSecond, there is improving growth efficiency. The study identified two key areas where major opportunities exist to reduce climate impacts and improve efficiency of crop growth. These included the reduction of emissions of global greenhouse gas – which agriculture is responsible for 20 t0 35 percent of – in the form of CO2, tropical deforestation and methane, as well as improved efficiency in water usage.

In the case of emissions, the biggest opportunities are in Brazil and Indonesia where deforestation is a major problem, and in China, India and the US, where the production of rice, livestock, and crop fertilization all lead to sizable carbon and methane emissions. With respect to nutrient use, the study found that worldwide, 60 percent of nitrogen and nearly 50 percent of phosphorus applications exceed what crops need to grow.

agribusinessIn the case of water usage, the greatest opportunities are in China, India and the US, where the production of rice, wheat and corn create the most demand for irrigation. India, Pakistan, China and the U.S. also account for the bulk of irrigation water use in water-limited areas. Thus, by boosting crop water use efficiency could also reduce water demand by 8 to 15% without compromising food production.

Third, the report calls for improved efficiency in crop use, which can be done by shifting crops from livestock to humans use and reducing food waste. Currently, the amount of crops fed to animals is sufficient to meet the calorie needs of 4 billion people. The U.S., China and Western Europe account for the bulk of this “diet gap,” with corn being the main crop diverted to animal feed. Shifting these crops could also form a “safety net” in the event of an unforeseen shortfall.

Last, but not least, the report calls for the elimination of food waste, which accounts for some 30 to 50 percent of food production worldwide. Again, the U.S., China and India are the major players, and reducing waste in these three countries alone could yield food for more than 400 million people. All told, these changes could allow for enough food for an additional 3 billion people, which is what the world population is expected to reach by 2050.

world_hungerOverall, West summarizes the report and its recommendations as follows:

Sustainably feeding people today and in the future is one of humanity’s grand challenges. Agriculture is the main source of water use, greenhouse gas emissions, and habitat loss, yet we need to grow more food. Fortunately, the opportunities to have a global impact and move in the right direction are clustered. By focusing on areas, crops and practices with the most to be gained, companies, governments, NGOs and others can ensure that their efforts are being targeted in a way that best accomplishes the common and critically important goal of feeding the world while protecting the environment. Of course, while calories are a key measure of improving food security, nutrition, access and cultural preferences must also be addressed. But the need to boost food security is high. So let’s do it.

As always, the good news is contained within the bad. Or more precisely, every crisis present us with an opportunity for change and advancement. Though Climate Change and air pollution may threaten current and future levels of food production, there are solutions. And in all cases, they present opportunities for healthier living, more efficient use of land and water, and a more sustainable way of meeting our most basic needs.

Sources: fastcoexist.com, sciencedaily.com

Climate Crisis: (More) Smog-Eating Buildings

pollution_eating2Air pollution is now one of the greatest health concerns in the world, exceeding cigarettes as the number one killer of people worldwide. With an estimated 7 million deaths in 2012 alone, the WHO now ranks it as the biggest global environmental killer. In fact, of the 1,600 major cities surveyed from around the world, over half are now above the safe limits of Particulate Matter (PM), with the highest cost borne by the poorer regions of South-East Asia and the Western Pacific.

Because of this, Carbon Capture technology is being seriously considered as an integral part of the future of urban planning and architecture. So in addition to addressing the issues if housing needs, urban sprawl and energy usage, major buildings in the future may also come equipped with air-cleaning features. Already, several major cities are taking advantage, and some innovative and futuristic designs have emerged as a result. Consider the following examples:

aircleaning_skyscraperCO2ngress Gateway Towers: Conceived by architects Danny Mui and Benjamin Sahagun while studying at the Illinois Institute of Technology, this concept for an air-cleaning skyscraper earned them an honorable mention in the 2012 CTBUH student competition. And while there are no currents plans to build it, it remains a fitting example of innovative architecture and merging carbon capture technology with urban planning and design.

The concept involves two crooked buildings that are outfitted with a filtration system that feeds captured CO2 to algae grown in the building’s interior, which then converts it into biofuels. Aside from the scrubbers, the buildings boast some other impressive features to cut down on urban annoyances. These include the “double skin facade”- two layers of windows – that can cut down on outside traffic noise. In addition, the spaces on either side of the buildings’ central elevator core can be used as outdoor terraces for residents.

CC_catalytic_clothingCatalytic Clothing: A collaborative effort between Helen Storey and Tony Ryan, the goal of this experiment is to incorporate the same pollution-eating titanium dioxide nanoparticles used in carbon capture façade into laundry detergent to coat clothing. According to Ryan, one person wearing the nanoparticle-washed clothes could remove 5 to 6 grams of nitrogen dioxide from the air a day; two pairs of jeans could clean up the nitrogen dioxide from one car.

If enough people in downtown New York, Beijing, Mumbai, Mexico City – or any other major city of the world renowned for urban density, high concentrations of fossil-fuel burning cars, and air pollution – would wear clothing coating with these nanoparticles, air pollution could be severely reduced in a few years time. And all at a cost of a few added cents a wash cycle!

CC_in_praise_of_airIn Praise of Air: Located in Sheffield, England, this 10×20 meter poster shows Simon Armitage’s poem “In Praise of Air”. Appropriately, the poster doubles as a pollution-eating façade that uses titanium dioxide nanoparticles. The full poem reads as follow:

I write in praise of air.  I was six or five
when a conjurer opened my knotted fist
and I held in my palm the whole of the sky.
I’ve carried it with me ever since.

Let air be a major god, its being
and touch, its breast-milk always tilted
to the lips.  Both dragonfly and Boeing
dangle in its see-through nothingness…

Among the jumbled bric-a-brac I keep
a padlocked treasure-chest of empty space,
and on days when thoughts are fuddled with smog
or civilization crosses the street

with a white handkerchief over its mouth
and cars blow kisses to our lips from theirs
I turn the key, throw back the lid, breathe deep.
My first word, everyone’s  first word, was air.

According to Tony Ryan of University of Sheffield, who created it with his colleagues, the poster can absorb about 20 cars’ worth of nitrogen oxide a day and would add less than $200 to the cost of a giant advertisement. While it is a creative tool for promoting a local poetry festival, it also serves as proof of concept that the technology can be incorporated into practically any textile, and will be reproduced on several more banners and posters in the coming months.

hyper_filter1Hyper Filter Skyscraper: Designed by Umarov Alexey of Russia, the Hyper Filter Skyscraper recognizes the threat of environmental pollution and seeks to merge carbon capture technology with the building’s design. Under today’s levels of pollution, harmful substances spread over hundreds of kilometers and a whole region and even a country could represent a single pollution source. Hence the plan to place a air-scrubbing building at the heart of the problem – an urban core.

Consistent with CC technology and the principle of photosynthesis, the Hyper Filter Skyscraper is designed to inhale carbon dioxide and other harmful gases and exhale concentrated oxygen. The skin of the project is made out of long pipe filters that ensure the cleaning process. While clean air is released to the atmosphere, all the harmful substances are stored for use in the chemical industry for later use. These can include chemicals products, biofuels, and even manufactured goods.

CC_mexico-hospital-facade-horizontal-galleryManuel Gea González Hospital: Located in Mexico City, this hospital was unveiled last year. The building features a “smog-eating” façade that covers 2,500 square meters and has titanium dioxide coating that reacts with ambient ultraviolet light to neutralize elements of air pollution, breaking them down to less noxious compounds like water. This was Berlin-based Elegant Embellishment’s first full-scale installation, and its designers claim the façade negates the effects of 1,000 vehicles each day.

Funded by Mexico’s Ministry of Health, the project is part of a three-year, $20 billion investment into the country’s health infrastructure, an effort which earned Mexico the Air Quality Prize at the 2013 City Climate Leadership Awards in London. Considering the fact that Mexico City is <i>the</i> most densely-populated cities in the world – with a population of 21 million people and a concentration of 6,000/km2 (15,000/sq mi) – this should come as no surprise.

CC-pollution-palazzo-italia-horizontal-galleryPalazzo Italia: Located in Milan, this building is designed by the architectural firm Nemesi & Partners, and comes equipped with a jungle-inspired façade that is built from air-purifying, “biodynamic” cement. This shell will cover 13,000 square meters across six floors, and will remove pollutants from the air and turns them into inert salts. Apparently, the material from Italcementi only adds 4-5 percent to the construction costs.

Scientists in the Netherlands have also adapted the photocatalytic material to roads, claiming it can reduce nitrous oxide concentrations by 45 percent. The building is set to launch next year at the 2015 Milan Expo.

Propogate Skyscraper: This pollution skyscraper was designed by Canadian architects YuHao Liu and Rui Wu, and won third place at this year’s eVolo’s Skyscraper Competition. Basically, it envisions a building that would turn air pollution into construction materials and use it to gradually create the building. Relying on an alternative carbon-capture technique that employs philic resins and material processes to transform carbon dioxide into solid construction material, their uses carbon dioxide as a means to self-propagate.

3028400-slide-propagateA simple vertical grid scaffold forms the framework and takes all the ingredients it needs for material propagation from the surrounding environment. Individual living spaces are built within this gridwork, which creates open square spaces between lattices that can then be filled by tenements. Its pattern of growth is defined by environmental factors such as wind, weather, and the saturation of carbon dioxide within the immediate atmosphere.

Thus each building is a direct reflection of its environment, growing and adapting according to local conditions and cleaning as the air as it does so. Unlike conventional skyscrapers, which rely on steel frame and concrete casting, the proposed skyscraper suggests a more environmental conscious construction method, an alternative mode of occupation and ownership, and possibly a distinct organization of social relationships.

Synthesized Spider Web: Another innovative solution comes from Oxford’s Fritz Vollrath, who was inspired by the behavior of spider silk fibers. With the addition of a glue-like coating, the thinness and electrical charge of spider silk allows them to capture any airborne particles that pass through them. These synthesized silk webs could be used like a mesh to capture pollutants – including airborne particulates, chemicals, pesticides, or heavy metals – coming out of chimneys or even disaster zones.

Spiderweb_towersSpiderweb Tower: Considering that London has some of the worst air quality in Europe, and the fact that air pollution is thought to be the second biggest risk to public health in the UK after smoking, solutions that can bring carbon capture and pollution-eating technology to downtown areas are in serious demand. And one solution comes from graduate architect Chang-Yeob Lee, who has come up with a radical design that would turn London’s BT Tower into a pollution harvesting ‘spiderweb’ that turned smog into bio-fuel.

Lee’s plan envisions the skyscraper being covered in a ‘giant eco-catalytic converter’ that traps pollutants from the capital’s air. At the same time, nano-tubes of titanium would turn carbon-dioxide into methanol and water using only the power of the sun. As Lee put it:

The project is about a new infrastructure gathering resources from pollutants in the city atmosphere, which could be another valuable commodity in the age of depleting resources.

Quite a bit of potential, and just in the nick of time too! And be sure to watch this video


Sources: iflscience.com, wired.co.uk, cnn.com, evolo.com, latintimes.com, catalyticpoetry.org

The Future is Bright: Positive Trends to Look For in 2014

Colourful 2014 in fiery sparklersWith all of the world’s current problems, poverty, underdevelopment, terrorism, civil war, and environmental degradation, it’s easy to overlook how things are getting better around the world. Not only do we no longer live in a world where superpowers are no longer aiming nuclear missiles at each other and two-thirds of the human race live beneath totalitarian regimes; in terms of health, mortality, and income, life is getting better too.

So, in honor of the New Year and all our hopes for a better world, here’s a gander at how life is improving and is likely to continue…

1. Poverty is decreasing:
The population currently whose income or consumption is below the poverty line – subsisting on less than $1.25 a day –  is steadily dropping. In fact, the overall economic growth of the past 50 years has been proportionately greater than that experienced in the previous 500. Much of this is due not only to the growth taking place in China and India, but also Brazil, Russia, and Sub-Saharan Africa. In fact, while developing nations complain about debt crises and ongoing recession, the world’s poorest areas continue to grow.

gdp-growth-20132. Health is improving:
The overall caloric consumption of people around the world is increasing, meaning that world hunger is on the wane. Infant mortality, a major issue arising from poverty, and underdevelopment, and closely related to overpopulation, is also dropping. And while rates of cancer continue to rise, the rate of cancer mortality continue to decrease. And perhaps biggest of all, the world will be entering into 2014 with several working vaccines and even cures for HIV (of which I’ve made many posts).

3. Education is on the rise:
More children worldwide (especially girls) have educational opportunities, with enrollment increasing in both primary and secondary schools. Literacy is also on the rise, with the global rate reaching as high as 84% by 2012. At its current rate of growth, global rates of literacy have more than doubled since 1970, and the connections between literacy, economic development, and life expectancy are all well established.

literacy_worldwide4. The Internet and computing are getting faster:
Ever since the internet revolution began, connection speeds and bandwidth have been increasing significantly year after year. In fact, the global average connection speed for the first quarter of 2012 hit 2.6 Mbps, which is a 25 percent year-over-year gain, and a 14 percent gain over the fourth quarter of 2011. And by the second quarter of 2013, the overall global average peak connection speed reached 18.9 Mbps, which represented a 17 percent gan over 2012.

And while computing appears to be reaching a bottleneck, the overall increase in speed has increased by a factor of 260,000 in the past forty years, and storage capacity by a factor of 10,000 in the last twenty. And in terms of breaking the current limitations imposed by chip size and materials, developments in graphene, carbon nanotubes, and biochips are promising solutions.

^5. Unintended pregnancies are down:
While it still remains high in the developing regions of the world, the global rate of unintended pregnancies has fallen dramatically in recent years. In fact, between 1995 and 2008, of 208 billion pregnancies surveyed in a total of 80 nations, 41 percent of the pregnancies were unintended. However, this represents a drop of 29 percent in the developed regions surveyed and a 20 percent drop in developing regions.

The consequences of unintended pregnancies for women and their families is well established, and any drop presents opportunities for greater health, safety, and freedom for women. What’s more, a drop in the rate of unwanted pregnancies is surefire sign of socioeconomic development and increasing opportunities for women and girls worldwide.

gfcdimage_06. Population growth is slowing:
On this blog of mine, I’m always ranting about how overpopulation is bad and going to get to get worse in the near future. But in truth, that is only part of the story. The upside is while the numbers keep going up, the rate of increase is going down. While global population is expected to rise to 9.3 billion by 2050 and 10.1 billion by 2100, this represents a serious slowing of growth.

If one were to compare these growth projections to what happened in the 20th century, where population rose from 1 billion to just over 6, they would see that the rate of growth has halved. What’s more, rates of population growth are expecting to begin falling in Asia by 2060 (one of the biggest contributors to world population in the 20th century), in Europe by 2055, and the Caribbean by 2065.

Population_curve.svgIn fact, the only region where exponential population growth is expected to happen is Africa, where the population of over 1 billion is expected to reach 4 billion by the end of the 21st century. And given the current rate of economic growth, this could represent a positive development for the continent, which could see itself becoming the next powerhouse economy by the 2050s.

7. Clean energy is getting cheaper:
While the price of fossil fuels are going up around the world, forcing companies to turn to dirty means of oil and natural gas extraction, the price of solar energy has been dropping exponentially. In fact, the per capita cost of this renewable source of energy ($ per watt) has dropped from a high of $80 in 1977 to 0.74 this past year. This represents a 108 fold decrease in the space of 36 years.

solar_array1And while solar currently comprises only a quarter of a percent of the planet’s electricity supply, its total share grew by 86% last year. In addition, wind farms already provide 2% of the world’s electricity, and their capacity is doubling every three years. At this rate of increase, solar, wind and other renewables are likely to completely offset coal, oil and gas in the near future.

Summary:
In short, things are looking up, even if they do have a long way to go. And a lot of what is expected to make the world a better place is likely to happen this year. Who knows which diseases we will find cures for? Who knows what inspirational leaders will come forward? And who knows what new and exciting inventions will be created, ones which offer creative and innovative solutions to our current problems?

Who knows? All I can say is that I am eager to find out!

Additional Reading: unstats.un.org, humanprogress.org, mdgs.un.org