Improvised explosive devices (IEDs), landmines and other kinds of roadside bombs are a major threat to Coalition troops serving overseas. And even though combat operations in Afghanistan are coming to a close in the near future, military planners and developers are still looking for ways to address the kinds of threats that are all too common in these fields of engagement.
One such developer is U.S. defense contractor Oshkosh Defense, which recently unveiled its new M-ATV, an armored vehicle specially designed to resist blasts from IEDs and mines. This specialized, high-tech troop transport detects explosives using special ground penetrating radar and a 12-wheeled mineroller which attaches to the front. But now, the company is going a step further.
Oshkosh now claims it wants to move soldiers even further from the danger zone by putting them in another vehicle entirely and making the minesweeping truck drive itself. For the past decade, the company has been developing an autonomous driving technology called TerraMax. This self-driving system can be applied to vehicles already on the road, and was unveiled during the 2004 DARPA Grand Challenge.
It’s now equipped with radar and LIDAR, which uses lasers to detect nearby objects, along with a drive-by-wire system that electronically controls engine speed, transmission, braking, and steering. The system does more than steer and hit the throttle and brakes. It can intelligently control a central tire inflation system and driveline locks to navigate deep sand or mud, all without any input from the operator.
Similar to the technology that powers Google’s self-driving cars, TerraMax is adapted for use in much tougher conditions. But whereas Google and big auto manufacturers can carefully map roads, lane markings, and speed limit signs before its vehicles are even on the road, Oshkosh doesn’t have those advantages. It’s vehicles must navigate hostile terrain in territories that have not been thoroughly mapped and imaged.
So it made TerraMax capable of combining overhead imagery from satellites and planes with standard military maps generated through geographic information systems. That lets soldiers define roads and other obstacles, much like with a commercial GPS system. Once given a defined course, the vehicles can navigate themselves while operators set things like vehicle speed and following distance.
Granted, these aren’t entirely autonomous vehicles. Whenever a convoy reaches an impasse of some kind, the M-ATV will need to alert an operator and ask what to do. However, it is still an impressive system that achieves two key objectives. One, it allows the military to move more cargo with fewer personnel; and two, it makes a convoy look like it’s carrying more personnel than it really is, which is likely to deter attacks.
Oshkosh’s unmanned vehicle technology is still in testing, but the company has spent the last three years working with the Marine Corp Warfighting Lab and the Office of Naval Research to get it ready for the battlefield. And while the technology is currently being developed for combat vehicles, it could also be used in civilian settings – like autonomous snow clearing at airports or police bomb disposal units.
Though Coaltion forces are drawing down their presence in Afghanistan, Oshkosh’s and other unmanned ground vehicle concepts will likely be used in conflicts around the world in the years to come. Company representatives gave demonstrations of the technology at Eurosatory 2014, a defense industry trade show, and say they received positive feedback from other nations as well.
And it is only one of several military-grade autonomous technology project currently in development. Lockheed Martin is also working on the Autonomous Mobility Appliqué System (AMAS), which also allows for autonomous or semi-autonomous driving. With the development of unmanned systems showing no signs of slowing down, autonomous-vehicle technology is likely to advance considerably in the coming years.
And be sure to check out this video of Oshkosh showcasing the M-ATV and TerraMax system at Eurosatory 2014:
Sources: wired.com, oshkoshdefense.com, humanisticrobotics.com