Powered by Wind: World’s Tiniest Windmills

tiny_windmillWind turbines are one of the fastest growing industries thanks to their ability to provide clean, renewable energy. And while most designs are trending towards larger and larger sizes and power yields, some are looking in the opposite direction. By equipping everyday objects with tiny windmills, we just might find our way towards a future where batteries are unnecessary.

Professor J.C. Chiao and his postdoc Dr. Smitha Rao of the University of Texas at Arlington are two individuals who are making this idea into a reality. Their new MEMS-based nickel alloy windmill is so small that 10 could be mounted on a single grain of rice. Aimed at very-small-scale energy harvesting applications, these windmills could recharge batteries for smartphones, and directly power ultra-low-power electronic devices.

tiny_windmill1These micro-windmills – called horizontal axis wind turbines – have a three-bladed rotor that is 1.8 mm in diameter, 100 microns thick, and are mounted on a tower about 2 mm tall mount. Despite their tiny size, the micro-windmills can endure strong winds, owing to being constructed of a tough nickel alloy rather than silicon, which is typical of most microelectromechanical systems (MEMS), and a smart aerodynamic design.

According to Dr. Rao, the problem with most MEMS designs is that they are too fragile, owing to silicon and silicon oxide’s brittle nature. Nickel alloy, by contrast, is very durable, and the clever design and size of the windmill means that several thousands of them could be applied to a single 200 mm (8 inch) silicon wafer, which in turn makes for very low cost-per-unit prices.

tiny_windmill2The windmills were crafted using origami techniques that allow two-dimensional shapes to be electroplated on a flat plane, then self-assembled into 3D moving mechanical structures. Rao and Chiao created the windmill for a Taiwanese superconductor company called WinMEMS, which developed the fabrication technique. And as Rao stats, they were interested in her work in micro-robotics:

It’s very gratifying to first be noticed by an international company and second to work on something like this where you can see immediately how it might be used. However, I think we’ve only scratched the surface on how these micro-windmills might be used.

Chiao claims that the windmills could perhaps be crafted into panels of thousands, which could then be attached to the sides of buildings to harvest wind energy for lighting, security, or wireless communication. So in addition to wind tunnels, large turbines, and piezoelectric fronds, literally every surface on a building could be turned into a micro-generator.

Powered by the wind indeed! And in the meantime, check out this video from WinMEMS, showcasing one of the micro-windmills in action:


Source: news.cnet.com, gizmag.com

Powered by the Sun: Bringing Solar to the Developing World

Magnificent CME Erupts on the Sun - August 31All over the world, the goal of bringing development to impoverished communities and nations – but in ways that won’t cause additional harm to the natural environment – remains problematic. As the cases of China and India demonstrate, the world’s fastest growing economies in the 21st century, rapid industrialization may bring economic development, but it comes with a slew of consequences.

These include urban sprawl, more emissions from cars and public transit, and the poisoning of waterways through toxic runoff, chemicals and fertilizers. With seven billion people living in the world today, the majority of which live in major cities and are dependent on fossil fuels, it is important to find ways to encourage growth that won’t make a bad situation worse.

solar_quetsolBut to paraphrase an old saying, crisis is the mother of creative solutions. And amongst forward-looking economist and developers, a possible solution is take the latest advancements in solar, wind, tidal power and biofuels, and tailor them to meet the needs of local communities. In so doing, it is hoped that the developing world could skip over the industrial phase, reaping the benefits of modernization without all the dirty, unhealthy consequences.

Two such men are Juan Rodriguez – a young man who was studying for his business administration at the Universidad Francisco Marroquin in and cut his teeth working for major multinationals like Pampers, Pepto Bismol and Pantene – and his childhood friend Manuel Aguilar, a Harvard graduate with a degree in astrophysics who had gone on to manage a global hedge fund.

solar_quetsol1Three years ago, the two agreed that they were looking for something else and began investigating renewable energy. The result was Quetsol, a company that uses solar energy to improve the quality of life of poor communities living off the electrical grid. In Rodriguez’s and Aguilar’s native Guatemala, such poverty is widespread, with close to 20% of the population living without electricity and relying primarily on candles for light.

This picture of poverty is not exactly news. But after spending a year visiting close to 100 such communities, Rodriguez and Aguilar began to get a clear picture of why solar hadn’t yet succeeded. As Rodriguez put it:

Going to a community and talking about solar power isn’t like going into a community and talking about space travel. It is something that people have already seen, because NGOs have donated solar systems to these communities for decades. In many cases, the systems worked perfectly, but eventually the batteries died, and nobody was there to service them.

solar_quetsol2There solution was to start from the bottom up, using the free-market principle of adapting their approach to meet local needs. This would involve identifying communities before visiting them, taking into account how many people were living without electricity, and what the housing situation was like. When they then visited these communities, they sought out community leaders and held public meetings to learn about them and present their ideas.

Buildings relationships with local communities was a challenge, but so was creating a product for a market whose needs ranged from basic lighting and cell phone charging to powering a refrigerator all day. What they found was that unelectrified communities were relying on terribly inefficient means, ranging from diesel generators to walking to the nearest electrified community to plug in a phone.

solar_quetsol3What was resulted was a Solar Kit, consisting of a 10W Solar Panel, a control box with 7 Amp Battery, 2  LED Bulbs  (and a third optional bulb), and a universal cell phone charger. This kit has the ability to provide five hours of electricity to a house made up of two rooms that measure roughly 25 square meters (225 square feet) each. This is the typical design of homes in rural Guatemala, with one room serving as the bedroom and the other as the kitchen.

With that done, they began working on their sales strategy. Initially, this consisted of working with microfinance credit institutions to help families and communities purchase their solar kits. But after watching too many credit applications get rejected, they took a page from the telecom companies that have made cell phones ubiquitous in Guatemala, Basically, they switched to a pay-as-you-go plan.

solar_quetsol4Today, Quetsol employs a staff of 20 people and boasts board members like Google’s Tom Chi. There product line has also expanded, with the Q1 Solar Kit being supplemented by the Q3, a heavier model that boasts a 75W solar panel, an 85 Amp Battery, and five LED bulbs. The Q2 Kit – a middle of the road model with a 30W panel, 34 amp battery and 3 bulbs – is soon to be released.

But most importantly of all, they have electrified more than 3,500 homes in Guatemala thus far. But that is just a drop in the bucket compared to their long-term goal. Basically, the organization is viewing Guatemala as a stepping stone to all of Latin America as well as Africa by 2015. By 2016, they’d like to tackle the nearly 700 million off-the-grid homes in Asia.

Might sound ambitious, but Rodriguez and Marroquin feel they have the business acumen and social entrepreneurial savvy to pull it off. And given their background and business model, I’d say they are about right. Combined with other technologies that merge local needs with clean, efficient, and renewable means, development in the developing world might actually be an eco-friendly possibility.

Sources: fastcoexist.com, quetsol.com