Glowing Plants and the Future of Gene Patenting

DNA-1Synthetic biology – also known as biohacking – is an emerging and controversial scientific field that uses gene-writing software to compile DNA sequences. And thanks to a recent ruling handed down by the US Supreme Court, it is a process which is now entirely legal. All told, the potential applications of synthetic biology are largely useful, leading to lifesaving cures, or altered crops that survive in any environment.

However, there are numerous potential (and potentially harmful) commercial applications that could emerge from this as well. One such advancement comes from a DIY synthetic biology lab known as Glowing Plant, one that specializes in synthetic bio hacking. Basically, the project was one of many that emerged out of Singularity University – a research institute dedicated future technologies today.

glowing_plantsGlowing Plant was  originally created to show the power of DIY synthetic biology, and has since sets its sights on developing a species of glowing house plant for consumers. To fund their goal, they opened up a Kickstarter campaign – the first of its kind – with the goal of $65,000. Based on research from the University of Cambridge and the State University of New York, the Glowing Plants campaign promised backers that they would receive seeds to grow their own glowing Arabidopsis plants at home.

glowing_plants2Glowing Plant also announced that if the campaign reaches its $400,000 stretch goal, glowing rose plants will also become available. As of the publication of this article, they passed that goal with a whopping $484,013 from a total of 8,433 backers. It seems there are no shortage of people out there who want to get their hands on a glowing house plant.

But Glowing Plant, the laboratory behind the project, has no intention of stopping there. As Antony Evans, co-founder of the project explained:

We wanted to test the idea of whether there is demand for synthetic biology projects. People are fundamentally excited and enthusiastic about synthetic biology.

Given the thousands of people backing the project, I’d say he’s right! But rest assured, Evans and his team have no intention of stopping there. The ultimate goal is to create larger species of glowing plants.

glowing_plants1The method used to achieve this is really quite interesting. It starts with the team downloading the luciferase-lucifern genes – the firefly DNA that allows them to glow – into a Genome Compiler, and then rewiring the DNA so that the proteins can be read by plants. The DNA sequences are then sent off to DNA printing company Cambrian Genomics, which has developed a relatively low-cost laser printing system. Those sequences are printed, put on a little spot of paper, and mailed back to the team.

After that, the team relies on one of two methods to transmit the firefly DNA into the Arabidopsis’ themselves. One way is to use a bacteria solution that is capable of injecting its own DNA into plants and rewriting theirs, which then causes the altered plants to germinate seeds of the new glowing strain. The other involves gold nano-particles coated with a DNA construct that are then fired at the plant cells, which are then absorbed into the plant chromosomes and alters their DNA.

NanoparticlesThis second method was devised to do an end run around specific Department of Agriculture regulations that govern the use of viruses or other pathogens to modify DNA. Though technically legal, the process has attracted resistance from environmental groups and the scientific community, fearing that the DNA of these altered plants will get into the natural gene pool with unknown consequences.

In fact, an anti-synthetic biology group called ECT has emerged in response to this and other such projects – and is centered in my old hometown of Ottawa! They have countered Glowing Plant’s Kickstarter campaign (which is now closed) with a fundraising drive of their own, entitled “Kickstopper”. In addition, the group has started a campaign on Avaaz.org to force the Supreme Court to reconsider the ruling that allows this sort of bioengineering to take place.

At present, their fundraising campaign has raised a total of  $1,701 from 58 backers – rougly 9% of its overall goal of $20,000 – and their Avaaz campaign has collected some 13,000 signatures. With 36 days left, there is no telling if they’re efforts will succeed in forcing a legal injunction on Glowing Plant, or if this is the first of many synthetic biology products that will make it to the market through private research and crowdfunding.

A fascinating time we live in, and potentially frightening…

Sources: fastcoexist.com, (2), kickstarter.com, glowingplant.com

The Future is Here: Using 3D Printing and DNA to Recreate Faces

strangervisions-1In what is either one of the most novel or frightening stories involving 3D printing and genetic research, it seems that an artist named Heather Dewey-Hagborg has been using the technology to recreate the faces of litterbugs. This may sound like something out of a dystopian novel – using a high-tech scenario to identify perpetrators of tiny crimes – but in fact, it is the basis of her latest art project.

It’s known as Stranger Visions, a series of 3D printed portraits based on DNA samples taken from objects found on the streets of Brooklyn. Using samples of discarded gum and litter collected from the streets, a her work with a DIY biology lab in Brooklyn called Genspace – where she met a number of biologists who taught her everything she now knows about molecular biology and DNA – she was able to reconstruct what the strangers looked like and then printed the phenotypes out as a series of 3D portraits.

According to Dewey-Hagborg, the inspiration for this project came to her while waiting for a therapy session, when she noticed a framed print on the wall that contained a small hair inside the cracked glass. After wondering who the hair belonged to, and what the person looked like, she became keenly aware of the genetic trail left by every person in their daily life, and began to question what physical characteristics could be identified through the DNA left behind on a piece of gum or cigarette butt.

strangervisions-3In a recent interview, Dewey-Hagborg explained the rather interesting and technical process behind her art:

So I extract the DNA in the lab and then I amplify certain regions of it using a technique called PCR – Polymerase Chain Reaction. This allows me to study certain regions of the genome that tend to vary person to person, what are called SNPs or Single Nucleotide Polymorphisms.

I send the results of my PCR reactions off to a lab for sequencing and what I get back are basically text files filled with sequences of As, Ts, Cs, and Gs, the nucleotides that compose DNA. I align these using a bioinformatics program and determine what allele is present for a particular SNP on each sample.

strangervisions-5

Then I feed this information into a custom computer program I wrote which takes all these values which code for physical genetic traits and parameterizes a 3d model of a face to represent them. For example gender, ancestry, eye color, hair color, freckles, lighter or darker skin, and certain facial features like nose width and distance between eyes are some of the features I am in the process of studying.

I add some finishing touches to the model in 3d software and then export it for printing on a 3d printer. I use a Zcorp printer which prints in full color using a powder type material, kind of like sand and glue.

The resulting portraits are bizarre approximations of anonymous people who unknowingly left their genetic material on a random city street. Naturally, there are plenty of people who wonder how accurate her approximations are. Well, according to Dewey-Hagborg, the portraits bear a “family resemblance” to the subject, and at this time, no person has never recognized themselves in any of her exhibitions. Yet…

strangervisions-4And of course, there are limitations with this sort of phenotype-DNA identification. For starters, it is virtually impossible to determine the age of a person from their DNA alone. In addition, facial features like scars and hair growth cannot be gauged, so Dewey-Hagborg casts each portrait as if the person were around 25 years of age.

And yet, I cannot help but feel that there is some awesome and terrible potential in what Dewey-Hagborg has created here. While her artistic vision had to do with the subject of identity and anonymity in our society, there is potential here for something truly advanced and invasive. Already it has been considered that DNA identification could be the way of the future, where everyone’s identity is kept in a massive database that can either be used to track them or eliminate as suspects in criminal cases.

But in cases where the person’s DNA is not yet on file, police would no longer need to rely on sketch artists to identify potential perps. Instead, they could just reconstruct their appearances based on a single strand of DNA, and use existing software to correct for age, hair color, facial hair, scars, etc, and then share the resulting images with the public via a public database or press releases.

strangervisions-2And as Dewey-Hagborg’s own project shows, the potential for public exposure and identification is huge. With a sophisticated enough process and a quick turnover rate, cities could identity entire armies of litterbugs, polluters, petty criminals and even more dangerous offenders, like pedophiles and stalkers, and publicly shame them by posting their faces for all to see.

But of course, I am forced to acknowledge that Dewey-Hagborg conducted this entire project using a DIY genetics lab and through her own ardent collection process. Whereas some would see here an opportunity for Big Brother to mess with our lives, others would see further potential for a democratic, open process where local communities are able to take genetics and identification into their own hands.

Like I said, the implications and potential being shown here are both awesome and scary!

Source: thisiscolossal.com