Immortality Inc: Regrowing Body Parts

https://i0.wp.com/images.gizmag.com/hero/lizardtails-2.jpgAnyone who has ever observed a lizard must not have failed to notice that they are capable of detaching their tails, and then regenerating them from scratch. This propensity for “spontaneous regeneration” is something that few organisms possess, and mammals are sadly not one of them. But thanks to a team of Arizona State University scientists, the genetic recipe behind this ability has finally been unlocked.

This breakthrough is a small part of a growing field of biomedicine that seeks to improve human health by tampering with the basic components (i.e. our DNA). The research, which was funded by grants from the National Institutes of Health and Arizona Biomedical Research Commission, also involved scientists from the University of Arizona College of Medicine, Translational Genomic Research Institute, and Michigan State University.

dna_cancerAccording to Prof. Kenro Kusumi, lead author of a paper on the genetic study, lizards are the most closely-related animals to humans that can regenerate entire appendages. They also share the same genetic language as us, so it’s theoretically possible that we could do what they do, if only we knew which genes to use and in what amounts. As Kusumi explains in the paper, which was published Aug. 20 in the journal PLOS ONE. :

Lizards basically share the same toolbox of genes as humans. We discovered that they turn on at least 326 genes in specific regions of the regenerating tail, including genes involved in embryonic development, response to hormonal signals, and wound healing.

Other animals, such as salamanders, frog tadpoles, and fish, can also regenerate their tails. During tail regeneration, they all turn on genes in what is called the ‘Wnt pathway’ — a process that is required to control stem cells in many organs such as the brain, hair follicles and blood vessel. However, lizards have a unique pattern of tissue growth that is distributed throughout the tail.

calico-header-640x353 It takes lizards more than 60 days to regenerate a functional tail — forming a complex regenerating structure with cells growing into different tissues at a number of sites along the tail. According to Katsumi, harnessing this would be a boon for medicine for obvious reasons:

Using next-generation technologies to sequence all the genes expressed during regeneration, we have unlocked the mystery of what genes are needed to regrow the lizard tail. By following the genetic recipe for regeneration that is found in lizards, and then harnessing those same genes in human cells, it may be possible to regrow new cartilage, muscle or even spinal cord in the future.

The researchers also hope their findings will also help repairing birth defects and treating diseases such as arthritis. Given time, and enough positive results, I think it would be fair to expect that Google’s Clinical Immortality subsidiary – known as Calico – will buy up all the necessary rights. Then, it shouldn’t be more than a decade before a gene treatments is produced that will allow for spontaneous regeneration and the elimination of degenerative diseases.

The age of post-mortal is looming people. Be scared/enthused!

Sources: kurzweil.net, gizmag.com

Looking Forward: 10 Breakthroughs by 2025

BrightFutureWorld-changing scientific discoveries are emerging all the time; from drugs and vaccines that are making incurable diseases curable, to inventions that are making renewable energies cheaper and more efficient. But how will these develops truly shape the world of tomorrow? How will the combination of advancements being made in the fields of medical, digital and industrial technology come together to change things by 2025?

Well, according to the Thomson Reuters IP & Science unit – a leading intellectual property and collaboration platform – has made a list of the top 10 breakthroughs likely to change the world. To make these predictions, they  looked at two sorts of data – current scientific journal literature and patent applications. Counting citations and other measures of buzz, they identified 10 major fields of development, then made specific forecasts for each.

As Basil Moftah, president of the IP & Science business (which sells scientific database products) said:

A powerful outcome of studying scientific literature and patent data is that it gives you a window into the future–insight that isn’t always found in the public domain. We estimate that these will be in effect in another 11 years.

In short, they predict that people living in 2025 will have access to far more in the way of medical treatments and cures, food will be more plentiful (surprisingly enough), renewable energy sources and applications will be more available, the internet of things will become a reality, and quantum and medical science will be doing some very interesting thins.

1. Dementia Declines:
geneticsPrevailing opinion says dementia could be one of our most serious future health challenges, thanks in no small part to increased life expectancy. In fact, the World Health Organization expects the number of cases to triple by 2050. The Thomson Reuters report is far more optimistic though, claiming that a focus on the pathogenic chromosomes that cause neuro-degenerative disease will result in more timely diagnosis, and earlier, more effective treatment:

In 2025, the studies of genetic mutations causing dementia, coupled with improved detection and onset-prevention methods, will result in far fewer people suffering from this disease.

2. Solar Power Everywhere:
solarpowergeWith the conjunction of increased efficiencies, dropping prices and improved storage methods, solar power will be the world’s largest single source of energy by 2025. And while issues such as weather-dependence will not yet be fully resolved, the expansion in panel use and the incorporation of thin photovoltaic cells into just about every surface imaginable (from buildings to roadways to clothing) will means that solar will finally outstrip fossil fuels as coal as the predominant means of getting power.

As the authors of the report write:

Solar thermal and solar photovoltaic energy (from new dye-sensitized and thin-film materials) will heat buildings, water, and provide energy for devices in the home and office, as well as in retail buildings and manufacturing facilities.

3. Type 1 Diabetes Prevention:
diabetes_worldwideType 1 diabetes strikes at an early age and isn’t as prevalent as Type 2 diabetes, which comes on in middle age. But cases have been rising fast nonetheless, and explanations range from nutritional causes to contaminants and fungi. But the report gives hope that kids of the future won’t have to give themselves daily insulin shots, thanks to “genomic-editing-and-repairing” that it expects will fix the problem before it sets in. As it specifies:

The human genome engineering platform will pave the way for the modification of disease-causing genes in humans, leading to the prevention of type I diabetes, among other ailments.

4. No More Food Shortages:
GMO_seedsContrary to what many speculative reports and futurists anticipate, the report indicates that by the year 2025, there will be no more food shortages in the world. Thanks to a combination of lighting and genetically-modified crops, it will be possible to grow food quickly and easily in a plethora of different environments. As it says in the report:

In 2025, genetically modified crops will be grown rapidly and safely indoors, with round-the-clock light, using low energy LEDs that emit specific wavelengths to enhance growth by matching the crop to growth receptors added to the food’s DNA. Crops will also be bred to be disease resistant. And, they will be bred for high yield at specified wavelengths.

5. Simple Electric Flight:
Solar Impulse HB-SIA prototype airplane attends his first flight over PayerneThe explosion in the use of electric aircraft (be they solar-powered or hydrogen fueled) in the past few decades has led to predictions that by 2025, small electric aircraft will offset commercial flight using gas-powered, heavy jets. The report says advances in lithium-ion batteries and hydrogen storage will make electric transport a reality:

These aircraft will also utilize new materials that bring down the weight of the vehicle and have motors with superconducting technology. Micro-commercial aircraft will fly the skies for short-hop journeys.

6. The Internet of Things:
internet-of-things-2By 2025, the internet is likely to expand into every corner of life, with growing wifi networks connecting more people all across the world. At the same time, more and more in the way of devices and personal possessions are likely to become “smart” – meaning that they will can be accessed digitally and networked to other things. In short, the internet of things will become a reality. And the speed at which things move will vastly increase due to proposed solutions to the computing bottleneck.

Here’s how the report puts it:

Thanks to the prevalence of improved semiconductors, graphene-carbon nanotube capacitators, cell-free networks of service antenna, and 5G technology, wireless communications will dominate everything, everywhere.

7. No More Plastic Garbage:
110315-N-IC111-592Ever heard of the Great Pacific Garbage Patch (aka. the Pacific Trash Vortex), the mass of plastic debris in the Pacific Ocean that measures somewhere between 700,000 and 15,000,000 square kilometres (270,000 – 5,800,000 sq mi)? Well, according to the report, such things will become a thing of the past. By 2025, it claims, the “glucose economy” will lead to the predominance of packaging made from plant-derived cellulose (aka. bioplastics).

Because of this influx of biodegradable plastics, there will be no more permanent deposits of plastic garbage filling our oceans, landfills, and streets. As it says:

Toxic plastic-petroleum packaging that litters cities, fields, beaches, and oceans, and which isn’t biodegradable, will be nearing extinction in another decade. Thanks to advancements in the technology related to and use of these bio-nano materials, petroleum-based packaging products will be history.

8. More Precise Drugs:
drugsBy 2025, we’ll have sophisticated, personalized medicine, thanks to improved production methods, biomedical research, and the growth of up-to-the-minute health data being provided by wearable medical sensors and patches. The report also offers specific examples:

Drugs in development are becoming so targeted that they can bind to specific proteins and use antibodies to give precise mechanisms of action. Knowledge of specific gene mutations will be so much more advanced that scientists and physicians can treat those specific mutations. Examples of this include HER2 (breast cancer), BRAF V600 (melanoma), and ROS1 (lung cancer), among many others.

9. DNA Mapping Formalized:
DNA-1Recent explosions in genetic research – which include the Genome Project and ENCODE – are leading to a world where personal genetic information will become the norm. As a result, kids born in 2025 will be tested at the DNA level, and not just once or twice, but continually using nano-probes inserted in the body. The result will be a boon for anticipating genetic diseases, but could also raise various privacy-related issues. As it states:

In 2025, humans will have their DNA mapped at birth and checked annually to identify any changes that could point to the onset of autoimmune diseases.

10. Teleportation Tested:
quantum-entanglement1Last, but certainly not least, the report says research into teleportation will be underway. Between the confirmation of the Higgs Boson (and by extension, the Standard Model of particle physics), recent revelations about quantum entanglements and wormholes, and the discovery of the Amplituhedron, the field of teleportation is likely to produce some serious breakthroughs. No telling what these will be – be it the ability to teleport simple photons or something larger – but the fact that the research will be happening seems a foregone conclusion:

We are on the precipice of this field’s explosion; it is truly an emerging research front. Early indicators point to a rapid acceleration of research leading to the testing of quantum teleportation in 2025.

Summary:
Will all of these changes come to pass? Who knows? If history has taught us anything, it’s that predictions are often wrong and much in the way of exciting research doesn’t always make it to the market. And as always, various factors – such as politics, money, public resistance, private interests – have a way of complicating things. However, there is reason to believe that the aforementioned 10 things will become a viable reality. And Moftah believes we should be positive about the future:

[The predictions] are positive in nature because they are solutions researchers and scientists are working on to address challenges we face in the world today. There will always be obstacles and issues to overcome, but science and innovation give us hope for how we will address them.

I, for one, am happy and intrigued to see certain items making this list. The explosion in solar usage, bioplastics, and the elimination of food scarcity are all very encouraging. If there was one thing I was anticipating by 2025, it was increased drought and food shortages. But as the saying goes, “necessity is the mother of invention”. And as someone who has had two grandmothers who lived into their nineties and have both suffered from the scourges of dementia, it is good to know that this disease will be on the wane for future generations.

It is also encouraging to know that there will be better treatments for diseases like cancer, HIV, and diabetes. While the idea of a world in which all diseases are preventable and/or treatable worries some (on a count of how it might stoke overpopulation), no one who has ever lived with this disease, or known someone who has, would think twice if presented with a cure. And hardship, hunger, a lack of education, resources and health services are some of the main reasons for population explosions.

And, let’s face it, its good to live in an age where the future looks bright for a change. After a good century of total war, totalitarianism, atomic diplomacy, terrorism, and oh so much existential angst and dystopian fiction, it’s nice to think that the coming age will turn out alright after all.

Sources: fastcoexist.com, ip-science.thomsonreuters.com

The Future is Weird: Human Urine used to grow Teeth?!

3dstemcellsStem cell research has been expanding impressively in recent years, and the range of applications has been growing accordingly. And while all are impressive and useful, some are – admittedly – odd and even a tad gross. One such application is the one that was recently unveiled in China, where a team of biologists are using stem cells harvested from human urine to grow structures in mice that resemble teeth.

The team, led by Duanqing Pei and Jinglei Cai from the Guangzhou Institute of Biomedicine and Health, had announced back in 2011 that it had successfully reprogrammed skin-like cells from the kidneys, found in urine, to turn into pluripotent stem (iPS) cells. As researchers have known for some time, these iPS cells can be tweaked to become pretty much any human cell in the body.

tooth-from-urine-cell-regenerationIn a paper produced by the Guangzhou biomedical team – which appeared in the peer-reviewed, open access journal Cell Regeneration last week – they claim the ability to “regenerate teeth with patients’ own cells” is an “ideal solution” to the loss of teeth through accidents or disease. As just one of many applications of stem cell research, the aim is to create synthetic biological tissues that can replace artificial implants.

Once the cell sheets formed into epithelial tissue – the kind of cells found in human skin and teeth – they implanted them with tissue from the jaw of a mouse embryo (to encourage it to grow into a tooth) in the kidney of a mouse. Three weeks later, they noted that the human tissue had turned into cells called ameloblasts that secrete enamel, the hard, bone-like substance on the outside of the tooth.

urine_stemcells_teethThe result was a series of tooth-like structures which possessed the hardness “found in the regular human tooth”, which were then harvested. Assuming that this approach could be scaled to involve dozens of mice across thousands of labs, artificial teeth could be mass produced and then be made available to dental clinics all over the world.

However, the real innovation came with the new method that the research team devised to get around some flaws in the traditional method. This method, which involves inserting the stem cells into blanket cells via a genetically engineered retrovirus, can lead to a destabilization of the cell genome, rendering the tissue unpredictable, susceptible to mutations and thus a liability.

stem_cells1Hence why Pei and his team opted for another route, one which they claim presents a safer, faster alternative. Having extracted kidney epithelial cells from the urine of three donors, the team used vectors — a type of DNA molecule useful in transporting genetic information from cell to cell. This allowed them to transport the genetic information without having to integrate the new genes into the chromosome of the kidney cell.

According to their paper, this process may be partly responsible for the aforementioned mutations in the first place. And once they tested out their new process, it took only 12 days for the pluripotent stem cells to form in a petri dish – roughly half the time it takes using the traditional approach.

URINE-STEM-CELLS-TEETH-570William Stanford – a University of Ottawa researcher who holds a Canada Research Chair in integrative stem cell biology – indicated that their approach is not entirely now. Growing various kinds of human tissues inside a mouse kidney is a common technique used by stem cell biologists, Stanford said. In the course of doing so, researchers will occasionally grow what looks like teeth by accident.

However, the Guangzhou team have modified the technique to grow teeth intentionally. And their approach is an improvement in that it does not require skin samples to be harvested by the human subject (a common practice at the moment). Using urine-harvested stem cells only requires that they pee into a cup, and the turnaround time is a matter of weeks instead of months.

Good news for anyone who is missing some chomper, or feels self-conscious about crooked or chipped teeth and can’t afford those expensive, porcelain implants. What’s more, teeth are really just the tip of the iceberg. In time, other organic tissues could be grown as well, allowing for further developments in the already exciting field artificial organ generation.

Sources: cbc.ca, wired.com

Patenting Genes: US Supreme Court Says No

dna_doublehelixLast week, in a landmark decision that is expected to have far-reaching consequences, the United States Supreme Court announced in a unanimous decision that no part of the human DNA sequence – or the DNA of any living organism – is patentable. This decision came after thirty years of patents being issued on genes for the sake of genetic research, and which was spurred on by recent developments, such as the publication of the human genome.

Specifically, the case came down to a claim made by Myriad Genetics, the company that discovered the BRCA-1 and BRCA-2 genetic mutations that can lead to higher incidences of breast cancer. They patented these sequences in the hopes of having a lucrative investment when it came to future screenings and treatments. But for many, this signaled that a line was being crossed, and the case went to court.

us_supremecourtFor critics of Myriad’s attempt to patent the genetic mutations, they claimed that this made screening often prohibitively expensive. Angelina Jolie was one such person, who drew attention to the fact that her mother – who died of breast cancer – and women like her would be unable to afford the treatment if Myriad got it’s way. Myriad fought back by saying that without the possibility of future financial gain, there would be no incentive for companies to sink money into searching for these genes.

In the end, the Supreme Court voted 9 to 0 that genes are products of nature and not human-made inventions, which makes them ineligible for a patent. For many, this decision has temporarily closed Pandora’s Box and prevented corporations from obtaining the right to carve up the human genome and lay claim to it, a process which many believed would lead to monopolies of gene treatments and the potential ownership of human beings themselves.

GMO_seedsOn the other hand, the court’s ruling did not apply to one other key issue: synthetic genes. Basically, genetic modifications that are made my companies for the sake of modifying foods, agricultural produce, and even animals are still up for grabs. And at least one major corporation is pretty pleased about this. In allowing for synthetic genes to remain a grey area, Monsanto is likely to continue seeking to patent its genetically-modified seeds.

Just over a month ago, the Supreme Court ruled in favor of the giant agribusiness in one of the most important lawsuits filed by the company in recent years. In essence, the court’s ruled that an Indiana soybean farmer was infringing on Monsanto’s soybean patent by buying the seeds from a nearby grain elevator and then saving them.

agribusinessOf the 144 lawsuits filed against 410 farmers and 56 small farm businesses throughout the U.S. in the past few years (according to the Center for Food Safety), this case was especially important. It essentially set the precedent that anyone selling genetically-modified grains had to pay royalties to the company responsible for their creation. This in turn has long-reaching implications which go far beyond agribusiness.

Though it is still a grey area, the legal battle over modified genes seems all but decided at this point. Whereas natural genes cannot be subject to patents, anything a company modifies in a lab already have been. But given the growth of skunkworks and biohacking labs around the world, there is still time for small operations and independent companies to get in on the action.

As time has shown, diversification is the natural enemy of monopolization. But by far the most important thing of all, whether it’s about patenting genes or modifying them for our use, is for people to remain informed on the issue. As long as people know what decisions are being made behind closed doors, they will have a shot at controlling the outcome.

Sources: fastcoexist.com, (2)

Should We Be Afraid? A List for 2013

emerg_techIn a recent study, the John J. Reilly Center at University of Notre Dame published a rather list of possible threats that could be seen in the new year. The study, which was called “Emerging Ethical Dilemmas and Policy Issues in Science and Technology” sought to address all the likely threats people might face as a result of all developments and changes made of late, particularly in the fields of medical research, autonomous machines, 3D printing, Climate Change and enhancements.

The list contained eleven articles, presented in random order so people can assess what they think is the most important and vote accordingly. And of course, each one was detailed and sourced so as to ensure people understood the nature of the issue and where the information was obtained. They included:

1. Personalized Medicine:
dna_selfassemblyWithin the last ten years, the creation of fast, low-cost genetic sequencing has given the public direct access to genome sequencing and analysis, with little or no guidance from physicians or genetic counselors on how to process the information. Genetic testing may result in prevention and early detection of diseases and conditions, but may also create a new set of moral, legal, ethical, and policy issues surrounding the use of these tests. These include equal access, privacy, terms of use, accuracy, and the possibility of an age of eugenics.

2. Hacking medical devices:
pacemakerThough no reported incidents have taken place (yet), there is concern that wireless medical devices could prove vulnerable to hacking. The US Government Accountability Office recently released a report warning of this while Barnaby Jack – a hacker and director of embedded device security at IOActive Inc. – demonstrated the vulnerability of a pacemaker by breaching the security of the wireless device from his laptop and reprogramming it to deliver an 830-volt shock. Because many devices are programmed to allow doctors easy access in case reprogramming is necessary in an emergency, the design of many of these devices is not geared toward security.

3. Driverless zipcars:
googlecarIn three states – Nevada, Florida, and California – it is now legal for Google to operate its driverless cars. A human in the vehicle is still required, but not at the controls. Google also plans to marry this idea to the zipcar, fleets of automobiles shared by a group of users on an as-needed basis and sharing in costs. These fully automated zipcars will change the way people travel but also the entire urban/suburban landscape. And once it gets going, ethical questions surrounding access, oversight, legality and safety are naturally likely to emerge.

4. 3-D Printing:
AR-153D printing has astounded many scientists and researchers thanks to the sheer number of possibilities it has created for manufacturing. At the same time, there is concern that some usages might be unethical, illegal, and just plain dangerous. Take for example, recent effort by groups such as Distributed Defense, a group intent on using 3D printers to create “Wiki-weapons”, or the possibility that DNA assembling and bioprinting could yield infectious or dangerous agents.

5. Adaptation to Climate Change:
climatewarsThe effects of climate change are likely to be felt differently by different people’s around the world. Geography plays a role in susceptibility, but a nation’s respective level of development is also intrinsic to how its citizens are likely to adapt. What’s more, we need to address how we intend to manage and manipulate wild species and nature in order to preserve biodiversity.This warrants an ethical discussion, not to mention suggestions of how we will address it when it comes.

6. Counterfeit Pharmaceuticals:
Syringe___Spritze___by_F4U_DraconiXIn developing nations, where life saving drugs are most needed, low-quality and counterfeit pharmaceuticals are extremely common. Detecting such drugs requires the use of expensive equipment which is often unavailable, and expanding trade in pharmaceuticals is giving rise to the need to establish legal measures to combat foreign markets being flooded with cheap or ineffective knock-offs.

7. Autonomous Systems:
X-47BWar machines and other robotic systems are evolving to the point that they can do away with human controllers or oversight. In the coming decades, machines that can perform surgery, carry out airstrikes, diffuse bombs and even conduct research and development are likely to be created, giving rise to a myriad of ethical, safety and existential issues. Debate needs to be fostered on how this will effect us and what steps should be taken to ensure that the outcome is foreseeable and controllable.

8. Human-animal hybrids:
human animal hybrid
Is interspecies research the next frontier in understanding humanity and curing disease, or a slippery slope, rife with ethical dilemmas, toward creating new species? So far, scientists have kept experimentation with human-animal hybrids on the cellular level and have recieved support for their research goals. But to some, even modest experiments involving animal embryos and human stem cells are ethical violation. An examination of the long-term goals and potential consequences is arguably needed.

9. Wireless technology:
vortex-radio-waves-348x196Mobile devices, PDAs and wireless connectivity are having a profound effect in developed nations, with the rate of data usage doubling on an annual basis. As a result, telecommunications and government agencies are under intense pressure to regulate the radio frequency spectrum. The very way government and society does business, communicates, and conducts its most critical missions is changing rapidly. As such, a policy conversation is needed about how to make the most effective use of the precious radio spectrum, and to close the digital access divide for underdeveloped populations.

10. Data collection/privacy:
privacy1With all the data that is being transmitted on a daily basis, the issue of privacy is a major concern that is growing all the time. Considering the amount of personal information a person gives simply to participate in a social network, establish an email account, or install software to their computer, it is no surprise that hacking and identity theft are also major conerns. And now that data storage, microprocessors and cloud computing have become inexpensive and so widespread, a discussion on what kinds of information gathering and how quickly a person should be willing to surrender details about their life needs to be had.

11. Human enhancements:
transhumanismA tremendous amount of progress has been made in recent decades when it comes to prosthetic, neurological, pharmaceutical and therapeutic devices and methods. Naturally, there is warranted concern that progress in these fields will reach past addressing disabilities and restorative measures and venture into the realm of pure enhancement. With the line between biological and artificial being blurred, many are concerned that we may very well be entering into an era where the two are indistinguishable, and where cybernetic, biotechnological and other enhancements lead to a new form of competition where people must alter their bodies in order to maintain their jobs or avoid behind left behind.

Feel scared yet? Well you shouldn’t. The issue here is about remaining informed about possible threats, likely scenarios, and how we as people can address and deal with them now and later. If there’s one thing we should always keep in mind, it is that the future is always in the process of formation. What we do at any given time controls the shape of it and together we are always deciding what kind of world we want to live in. Things only change because all of us, either through action or inaction, allow them to. And if we want things to go a certain way, we need to be prepared to learn all we can about the causes, consequences, and likely outcomes of every scenario.

To view the whole report, follow the link below. And to vote on which issue you think is the most important, click here.

Source: reilly.nd.edu