The Future is Here: Google X’s Delivery Drones

google-x-project-wing-prototypesThere are drones for aerial reconnaissance, drones for domestic surveillance, and drones for raining hell, death and destruction down on enemy combatants. But drones for making personal deliveries? That’s a relatively new one. But it is a not-too-surprising part of an age where unmanned aerial vehicles are becoming more frequent and used for just about every commercial applications imaginable.

After working on secret for quite some time, Google’s secretive projects lab (Google X) recently unveiled its drone-based delivery system called Project Wing. On the surface, the project doesn’t look much different from Amazon’s Prime Air aut0nomous quadcopter delivery service. However, on closer inspection, Project Wing appears to be much more ambitious, and with more far-reaching goals.

Amazon-Google-780x400The original concept behind Project Wing — which has been in development for more than two years — was to deliver defibrillators to heart attack sufferers within two minutes. But after running into issues trying to integrate its tech with the US’s existing 911 and emergency services systems, the focus shifted to the much more general problem of same-day deliveries, disaster relief, and delivering to places that same- and next-day couriers might not reach.

For their first test flights, the Google team traveled to Australia to conduct deliveries of dog food to a farmer in Queensland. All 31 of Project Wing’s full-scale test flights have been conducted in Australia, which has a more permissive “remotely piloted aircraft” (i.e. domestic drones) policy than the US. There’s no word on when Project Wing might be commercialized, but it is estimated that it will be at least a couple of years.

google-drones-290814While most work in small-scale autonomous drones and remotely piloted aircraft generally revolves around quadcopters, Google X instead opted for a tail-sitter design. Basically, the Project Wing aircraft takes off and lands on its tail, but cruises horizontally like a normal plane. This method of vertical-takeoff-and-landing (VTOL) was trialed in some early aircraft designs, but thrust vectoring was ultimately deemed more practical for manned flight.

The Project Wing aircraft has four electric motors, a wingspan of around 1.5m (five feet), and weighs just under 8.6 kg (19 pounds). Fully loaded, the drones apparently weigh about 10 kg (22 pounds) and are outfitted with the usual set of radios and sensors to allow for autonomous flight. But there’s also a camera, which can be used by a remote pilot to ensure that the aircraft drops its package in a sensible location.

google-project-wing-delivery-drone-640x353As you can see from the video below, the packages are dropped from altitude, using a winch and fishing line. Early in the project, Google found that people wanted to collect packages directly from the drone, which was impractical when the engines were running. The air-drop solution is much more graceful, and also allows the drone to stay away from a large variety of low-altitude obstacles (humans, dogs, cars, telephone lines, trees…)

This is another major different with Amazon Prime Air’s drones, which carry their package on the drone’s undercarriage and land in order to make the delivery. And while their octocopters do have slightly better range – 1.6 km (1 mile), compared to Project Wing’s 800 meters (half a mile) – Google is confident its delivery system is safer. And they may be right, since its not quite clear how small children and animals will react to a landing object with spinning rotors!

Google-Wing-3For the moment, Google has no specific goal in mind, but the intent appears to be on the development for a full-scale same-day delivery service that can transport anything that meets the weight requirements. As Astro Teller, director of Google X labs, said in an interview with The Atlantic:

Throughout history there have been a series of innovations that have each taken a huge chunk out of the friction of moving things around. FedEx overnight delivery has absolutely changed the world again. We’re starting to see same-day service actually change the world. Why would we think that the next 10x — being able to get something in just a minute or two — wouldn’t change the world?

Nevertheless, both projects are still years away from realization, as both have to content with FAA regulations and all the red tape that come with it. Still, it would not be farfetched to assume that by the 2020’s, we could be living in a world where drones are a regular feature, performing everything from traffic monitoring and aerial reconnaissance to package delivery.

And be sure to check out these videos from CNET and Amazon, showing both Project Wing and Prime Air in action:

 

 


Sources:
extremetech.com
, zdnet.com, mashable.com

News From Space: Plants on the Moon by 2015!

moon_plantsThe moon remains the focal point of much of our space-related goals for the near future. In addition to China recently landing its Jade Rabbit probe, the more ambitious plans of NASA and the ESA involve building a settlement there in the near future. But of course, these and other plans to turn the moon into a new frontier from humanity are marred by the fact the environment is not habitable.

Luckily, NASA plans to change that, starting with growing plants on the lunar surface. And while this might seem like a long way away from building sealed domes and mounting full-scale terraforming, it is a big step in that direction. Aside from the obvious life support that vegetation would provide – air, food, and water – it would also provide another integral aspect to a habitable lunar environment.

moonexpressPlants react to aspects of a harsh environment similarly to humans, as their genetic material can be damaged by radiation. A relatively safe way to test long-term lunar exposure is to send plants there and monitor their health. Rather than making the trip and dropping the plants off itself, NASA plans to use commercial spaceflight as the vehicle by which the plants will be sent up to the moon.

And that’s where Google comes in, NASA’s proposed partner for this venture. Using the Moon Express, a small, lightweight craft (about 1 kilogram or 2 pounds) that will act as a self-sustaining habitat for the vegetation, NASA will deliver these plants to the moon by 2015. This lunar lander is part of the Google Lunar X Prize, a competition to create a robotic spacecraft that can fly to and land on the moon.

ESA_moonbaseOnce the lander arrives on the moon, water will be added to the basil, turnip, and Arabidopsis (a small flowering plant) seeds kept in the habitat, then monitored for five to ten days and compared to control groups germinating back on Earth. NASA will also monitor the actual habitat itself, looking toward its scalability since the small habitat isn’t large enough to support human life.

Currently, the chamber can support 10 basil seeds, 10 turnip seeds, and around 100 Arabidopsis seeds. It also holds the bit of water that initiates the germination process, and uses the natural sunlight that reaches the moon to support the plant life. In order to study the quality of the plant growth and movement, the habitat will take images and beam them back home.

3dprinted_moon_base1If NASA doesn’t run into any unexpected bumps, its long-term plans include attempting to grow a more diverse array of plants, longer growth periods, and reproduction experiments. The longer the experiments, the more we’ll learn about the long-term effects of a lunar environment on Earth plants, which will tell us much of what we need to know if we ever plan on building true settlements there in the future.

Sources: extremetech.com, nasa.gov

Space Elevators!

space_elevatorWhen it comes to classic and hard science fiction, there are few concepts more inspired, more audacious, and more cool than the Space Elevator. Consisting of a cable (or tether) attached the Earth near the equator and a station in geosynchronous orbit, a structure of this kind would allow us to put objects, supplies and even people into orbit without the need for rockets and space ships.

And perhaps I am a bit biased, seeing as how one of the writer’s featured in the Yuva anthology happens to have written a story that features one – Goran Zidar, whose story “Terraformers” includes an orbital colony that is tethered to the planet by a “Needle”. But I’ve found the concept fascinating for as long as I have known about it, and feel like its time for a conceptual post that deals with this most awesome of concepts!

Here goes…

History:
The first recorded example of the space elevator concept appeared in 1895 when Russian scientist Konstantin Tsiolkovsky was inspired by the Eiffel Tower in Paris. He considered a similar tower that extended from the ground into geostationary orbit (GSO) in space. Objects traveling into orbit would attain orbital velocity as they rode up the tower, and an object released at the tower’s top would also have the velocity necessary to remain in orbit.

space_elevator1However, his concept called for a compression structure, which was unfeasible given that no material existed that had enough compressive strength to support its own weight under such conditions. In 1959, another Russian scientist named Yuri N. Artsutanov suggested a more feasible proposal, a tensile structure which used a geostationary satellite as the base from which to deploy the structure downward.

By using a counterweight, a cable would be lowered from geostationary orbit to the surface of Earth, while the counterweight was extended from the satellite away from Earth, keeping the cable constantly over the same spot on the surface of the Earth. He also proposed tapering the cable thickness so that the stress in the cable was constant. This gives a thinner cable at ground level that becomes thicker up towards the GSO.

space_elevator_liftIn 1966, Isaacs, Vine, Bradner and Bachus, four American engineers, reinvented the concept under the name “Sky-Hook”. In 1975, the concept was reinvented again by Jerome Pearson, whose model extended the distance of the counterweight to 144,000 km (90,000 miles) out, roughly half the distance to the Moon. However, these studies were also marred by the fact that no known material possessed the tensile strength required.

By the turn of the century, however, the concept was revitalized thanks to the development of carbon nanotubes. Believing that the high strength of these materials might make an orbital skyhook feasible, engineer David Smitherman of NASA put together a workshop at the Marshall Space Flight Center and invited many scientists and engineers to participate. Their findings were published in an article titled “Space Elevators: An Advanced Earth-Space Infrastructure for the New Millennium”.

carbon-nanotubeAnother American scientist, Bradley C. Edwards, also suggested using nanotubes to create a 100,000 km (62,000 mile) paper-thin cable that would be shaped like a ribbon instead of circular. This, he claimed, would make the tether more resistant to impacts from meteoroids.  The NASA Institute for Advanced Concepts began supporting Edwards’ work, allowing him to expand on it and plan how it would work in detail.

In Fiction:
arthurcclarke_fountains-of-paradiseIn 1979, the concept of the Space Elevator was introduced to the reading public thanks to the simultaneous publications of Arthur C. Clarke’s The Fountains of Paradise (1979) and Charles Sheffield’s The Web Between the Worlds. In the former, engineers construct a space elevator on top of a mountain peak in the fictional island country of Taprobane, which was loosely based on Clarke’s new home in Sri Lanka, albeit moved south to the Equator.

In an interesting and fact-based twist, the purpose for building the elevator on Earth is to demonstrate that it can be done on Mars. Ultimately, the protagonist of the story (Dr Vannevar Morgan) is motivated by his desire to help a Mars-based consortium to develop the elevator on Mars as part of a massive terraforming project, something which has been proposed in real life.

Sheffield- The Web Between the WorldsSimiliarly, in Sheffield’s Web, which was his first novel, we see a world famous engineer who has created extensive bridge networks all over the world using graphite cable. In hoping to achieve the unachievable dream, he begins work on a space elevator code named the “Beanstalk”. This brings him into an alliance with a corrupt tycoon who wants to make rockets obsolete, and intrigue ensues…

Three years later, Robert A. Heinlein’s novel Friday features a space elevator known as the “Nairobi Beanstalk”. In Heinlein’s vision, the world of the future is heavily Balkanized, and people exist in thousands of tiny nation states and orbital colonies which are connected to Earth via the Beanstalk, which as the name suggests, is located in equatorial Africa.

ksr_redmarsIn 1993, Kim Stanley Robinson released Red Mars, a sci-fi classic that remains a quintessential novel on the subject of Mars colonization. In the novel, the Martian colonists build a space elevator that allows them to bring additional colonists to the surface, as well as transport natural resources that were mined planetside into orbit where they can be ferried back to Earth.

In 1999, Sid Meier’s, creator of the famed Civilization gaming series, released the sci-fi based Sid Meier’s Alpha Centauri that deals with the colonization of the planet “Chiron” in the Alpha Centauri system. In the course of the turn-based strategy game, players are encouraged to construct special projects as a way of gaining bonuses and building up their faction’s power.

One such project is the Space Elevator, which requires that the faction building first research the technology “super tensile solids” so they have the means of building a super-tensile tether. Once built, it confers bonuses for space-based unit production, allows orbital drop units to be deployed over the entire planet, increases production rates for satellites, and removes the need for aerospace facilities. spaceelevator_alpha_centauriIn David Gerrold’s 2000 novel, Jumping Off The Planet, we are again confronted with an equatorial space elevator, this time in Ecuador where the device is once again known as the “beanstalk”. The story focuses on a family excursion which is eventually revealed to be a child-custody kidnapping. In addition to this futuristic take on domestic issues, Gerrold also examined some of the industrial applications of a mature elevator technology.

Chasm_City_coverIn 2001, Alastair Reynolds, a hard sci-fi author and creator of the Revelation Space series, released Chasm City, which acted as a sort of interquel between the first and second books in the main trilogy. At the opening of the novel, the story takes place on Sky’s Edge, a distant world where settlers travel to and from ships in orbit using a space elevator that connects to the planetary capitol on the surface.

And in 2011, author Joan Slonczewski presented a biological twist on the concept with her novel The Highest Frontier. Here, she depicts a college student who ascends a space elevator that uses a tether constructed from self-healing cables of anthrax bacilli. The engineered bacteria can regrow the cables when severed by space debris, thus turning the whole concept of tensile solids on its head.

Attempts to Build a Space Elevator:
Since the onset of the 21st century, several attempts have been made to design, fund, and create a space elevator before the end of this century. To speed the development process, proponents of the concept have created several competitions to develop the relevant technologies. These include the Elevator: 2010 and Robogames Space Elevator Ribbon Climbing, annual competitions seeking to design climbers, tethers and power-beaming systems.

space_elevator_nasaIn March of 2005, NASA announced its own incentive program, known as the Centennial Challenges program, which has since merged the Spaceward Foundation and upped the total value of their cash prizes to US$400,000. In that same year, the LiftPort Group began producing carbon nanotubes for industrial use, with the goal of using their profits as capital for the construction of a 100,000 km (62,000 mi) space elevator.

In 2008, the Japanese firm known as the Space Elevator Association, chaired by Shuichi Ono, announced plans to build a Space Elevator for the projected price tag of a trillion yen ($8 billion). Though the cost is substantially low, Ono and his peers claimed that Japan’s role as a leader in the field engineering could resolve the technical issues at the price they quoted.

obayashi-2In 2011, Google was reported to be working on plans for a space elevator at its secretive Google X Lab location. Since then, Google has stated that it is not working on a space elevator. But in that same year, the first European Space Elevator Challenge (EuSEC) to establish a climber structure took place in August.

And in 2012, the Obayashi Corporation of Japan announced that in 38 years it could build a space elevator using carbon nanotube technology. Their detailed plan called for a 96,000 long tether, supported by a counterweight, that could hold a 30-passenger climber that would travel 200 km/h, reaching the GSO after a 7.5 day trip. However, no cost estimates, finance plans, or other specifics were made at this point.

space-elevator-schematics-largeDespite these efforts, the problems of building are still marred by several technical issues that have yet to be resolved. These include the problems of tensile strength, dangerous vibrations along the tether line, climbers creating wobble, dangers posed by satellites and meteoroids, and the fact that such a structure would be vulnerable to a terrorist or military attack.

Other Possibilities:
Though we may never be able to resolve the problems of building a space elevator on Earth, scientists are agreed that one could be made on other planets, particularly the Moon. This idea was first devised by Jerome Pearson, one of the concepts many original proponents, who proposed a smaller elevator that would be anchored by Earth’s gravity field.

LiftPort1This is a necessity since the Moon does not rotate and could therefore not maintain tension along a tether. But in this scenario, the cable would be run from the moon and out through the L1 Lagrangian point. Once there, it would be dangled down into Earth’s gravity field where it would be held taught by Earth gravity and a large counterweight attached to its end.

Since the Moon is a far different environment than planet Earth, it presents numerous advantages when building a space elevator. For starters, there’s the strength of the materials needed, which would be significantly less, thus resolving a major technical issue. In addition, the Moon’s lower gravity would mean a diminished weight of the materials being shipped and of the structure itself.

space_elevator_lunarAs Pearson explained:

[T]o lift a thousand tons per day off the lunar surface, it would take less than 100,000 tons of elevator to do it — which means it pays back its own mass in just 100 days, or somewhere between three and four times its own mass per year — which is not a bad rate of return… You don’t need nanotubes and very, very high strength materials. But the higher the strength, the more of the ratio you can get for hauling stuff on the moon.

In fact, LiftPort is already deep into developing a “Lunar Elevator”. Plans to build one by 2020 were announced back in 2010, and since that time, the company launched a Kickstarter campaign to get the funding necessary to conduct tests that will get them closer to this goal. These consisting of sending a tethered robot 2km from the surface to conduct stress and telemetry tests.

Ultimately, the company estimates that a Lunar Elevator could be made at the cost of $800 million, which is substantially less than a “Terran Elevator” would cost. Similarly, it is likely that any manned missions to Mars, which will include eventual settlement and plans to terraform, will involve a Martian elevator, possibly named the “Ares Elevator”.

Much like SpaceX’s attempts to resolve the costs of sending rockets into space, the concept of a space elevator is another means of reducing the cost of sending things into orbit. As time goes on and technology improves, and humanity finds itself in other terrestrial environments where resources need to be exported into space, we can expect that elevators that pierce the sky will become possible.

In the meantime, we can always dream…

space_elevator_conceptSources: en.wikepedia.org, gizmag.com, io9.com, forbes.com, universetoday.com, futuretimeline.com

New Video Shows Google Glasses in Action

GOOGLE-GLASS-LOGO1In a recently released teaser video, designed to expand Google Glass’ potential consumer base from the tech-savvy to what it refers to as “bold, creative individuals”. While the first video of their futuristic AR specs followed a New Yorker as they conducted mundane tasks through the city, this new clip hosts a dizzying array of activities designed to show just how versatile the product can be.

This includes people engaged in skydiving, horseback riding, catwalking at a fashion show, and performing ballet. Quite the mixed bag! All the while, we are shown what it would look like to do these activities while wearing a set of Google glasses. The purpose here is not only to show their functionality, but to give people a taste of what it an augmented world looks like.google_glass

And based on product information, videos and stillpics from the Google Glass homepage, it also appears that these new AR glasses will take advantage of the latest in flexible technology. Much like the new breeds of smartphones and PDAs which will be making the rounds later this year, these glasses are bendable, flexible, and therefore much more survivable than conventional glasses, which probably cost just as much!

Apparently, this is all in keeping with CEO and co-founder Larry Page’s vision of a world where Google products make their users smarter. In a 2004 interview, Page shared that vision with people, saying: “Imagine your brain is being augmented by Google.” These futurist sentiments may be a step closer now, thanks to a device that can provide on-the-spot information about whatever situation or environment we find ourselves in.

google_glass1One thing is for sure though. With the help of some AR specs, the middle man is effectively cut out. No longer are we required to aim our smartphones, perform image searches, or type things into a search engine (like Google!). Now we can just point, look, and wait for the glasses to identify what we are looking at and provide the requisite information.

Check out the video below: