The Future is Here: Silk Brain Implant to Treat Epilespy

silk_implantsSilk implants are becoming the way of the future as far as brain implants are concerned, due to their paradoxically high resiliency and ability to dissolve. By combining them with nanoelectric circuits or drugs, scientists are exploring several possible applications, ranging from communications devices to control prosthetics and machines to medicinal devices that could treat disabilities and mental illnesses.

And according to a recent study released by the National Institutes of Health, treating epilepsy is just the latest application. According to the study, when administered to a series of epileptic rats, the treatment led to the rats experiencing far fewer seizures. What’s more, this new treatment represents something entirely new in terms of treatment of neurological disorder.

brain_chipFor starters, Rebecca L. Williams-Karneskyand and her colleagues used the silk implants for a timed-release therapy in rats experiencing epileptic seizures. Working on the theory that people with epilepsy suffer from a low level of adenosine – a chemical that the brain releases naturally to suppress seizures (and also perhaps movement during sleep) – they soaked the silk implants before implanting them.

Those rats who recieved the silk brain implants still had seizures, but their numbers were reduced fourfold. The implant released the chemical for ten days before they completely dissolved. And with time and testing, the treatment could very easily be made available for humans. According to the study’s co-author, Detlev Boison:

Clinical applications could be the prevention of epilepsy following head trauma or the prevention of seizures that often — in about 50 percent of patients — follow conventional epilepsy surgery. In this case, adenosine-releasing silk might be placed into the resection cavity in order to prevent future seizures.

brainscanBetween the timed release of drugs and nanoelectric circuits that improve neuroelasticity, recall and relaxation, brain implants are coming a long way. At one time, they were the province of cyberpunk science fiction. But thanks to ongoing research and development, they are quickly jumping from the page and becoming a reality.

Though they currently remain confined to medical tests and laboratories, experts agree that it will be just a few years time before they are commercially available. By sometime in the coming decade, medimachines and neural implants will probably become a mainstay, and neurological disorders a fully treatable phenomena.

Sources: io9.com, nih.gov

Worlds First Medimachine!

Medimachine: noun, a nanotechnological device used for medical applications. Granted, that’s not a working definition, but it does encompass what the technology is all about. And, as it happens, researchers at Standford created the world’s first device which is capable of traveling through the human bloodstream and which is controlled and powered wirelessly just this past year.

This development came in the midst of a similar significant development over at MIT. In January of this year, they announced that they had developed the world’s first implantable microchip that could deliver drugs directly into the bloodstream. This chip is also controlled wirelessly, and is the first step towards remote implants that could contain an entire pharmacy.

According to Ada Poon, the lead developer of the Standford team, the next step in the development of this device will be creating models that incorporate sensors and drug delivery systems for the ultimate in pin-point accurate medicine. If successful, Poon and her team could very well be responsible for creating the prototype device that will inspire entire generations of medical machines that are conducting exploratory exams, cleaning our arteries, removing tumors, destroying pathogens and viruses, and even repairing internal injuries.

And just think, if this development triggers further research and development, it could very well lead to nanomachines which are capable of making even tinier nanomachines. These devices could in turn manipulate matter on the mitochondrial level, correcting faults in our DNA and turning harmful or unwanted cells into something more useful for our bodies.

Just another step on the road to transhumanism and post-mortality!

Source: Extremtech.com