The Future is Here: Google’s New Self-Driving Car

google-new-self-driving-car-prototype-640x352Google has just unveiled its very first, built-from-scratch-in-Detroit, self-driving electric robot car. The culmination of years worth of research and development, the Google vehicle is undoubtedly cuter in appearance than other EV cars – like the Tesla Model S or Toyota Prius. In fact, it looks more like a Little Tikes plastic car, right down to smiley face on the front end. This is no doubt the result of clever marketing and an attempt to reduce apprehension towards the safety or long-term effects of autonomous vehicles.

The battery-powered electric vehicle has as a stop-go button, but no steering wheel or pedals. It also comes with some serious expensive hardware – radar, lidar, and 360-degree cameras – that are mounted in a tripod on the roof. This is to ensure good sightlines around the vehicle, and at the moment, Google hasn’t found a way to integrate them seamlessly into the car’s chassis. This is the long term plan, but at the moment, the robotic tripod remains.

google-self-driving-car-prototype-concept-artAs the concept art above shows, the eventual goal appears to be to to build the computer vision and ranging hardware into a slightly less obtrusive rooftop beacon. In terms of production, Google’s short-term plan is to build around 200 of these cars over the next year, with road testing probably restricted to California for the next year or two. These first prototypes are mostly made of plastic with battery/electric propulsion limited to a max speed of 25 mph (40 kph).

Instead of an engine or “frunk,” there’s a foam bulkhead at the front of the car to protect the passengers. There’s just a couple of seats in the interior, and some great big windows so passengers can enjoy the view while they ride in automated comfort. In a blog post on their website, Google expressed that their stated goal is in “improving road safety and transforming mobility for millions of people.” Driverless cars could definitely revolutionize travel for people who can’t currently drive.

google_robotcar_mapImproving road safety is a little more ambiguous, though. It’s generally agreed that if all cars on the road were autonomous, there could be some massive gains in safety and efficiency, both in terms of fuel usage and being able to squeeze more cars onto the roads. In the lead-up to that scenario, though, there are all sorts of questions about how to effectively integrate a range of manual, semi- and fully self-driving vehicles on the same roadways.

Plus, there are the inevitable questions of practicality and exigent circumstances. For starters, having no other controls in the car but a stop-go button may sound simplified and creative, but it creates problems. What’s a driver to do when they need to move the car just a few feet? What happens when a tight parking situation is taking place and the car has to be slowly moved to negotiate it? Will Google’s software allow for temporary double parking, or off-road driving for a concert or party? google_robotca

Can you choose which parking spot the car will use, to leave the better/closer parking spots for someone with special needs (i.e. the elderly or physically disabled)? How will these cars handle the issue of “right of way” when it comes to pedestrians and other drivers? Plus, is it even sensible to promote a system that will eventually make it easier to put more cars onto the road? Mass transit is considered the best option for a cleaner, less cluttered future. Could this be a reason not to develop such ideas as the Hyperloop and other high-speed maglev trains?

All good questions, and ones which will no doubt have to be addressed as time goes on and production becomes more meaningful. In the meantime, there are no shortage of people who are interested in the concept and hoping to see where it will go. Also, there’s plenty of people willing to take a test drive in the new robotic car. You can check out the results of these in the video below. In the meantime, try not to be too creeped out if you see a car with a robotic tripod on top and a very disengaged passenger in the front seat!


Sources:
extremetech.com, scientificamerican.com

The Future is Here: Google Robot Cars Hit Milestone

google_robotcaIt’s no secret that amongst its many cooky and futuristic projects, self-driving cars are something Google hopes to make real within the next few years. Late last month, Google’s fleet of autonomous automobiles reached an important milestone. After many years of testing out on the roads of California and Nevada, they logged well 0ver one-million kilometers (700,000 miles) of accident-free driving. To celebrate, Google has released a new video that demonstrates some impressive software improvements that have been made over the last two years.

Most notably, the video demonstrates how its self-driving cars can now track hundreds of objects simultaneously – including pedestrians, an indicating cyclist, a stop sign held by a crossing guard, or traffic cones. This is certainly exciting news for Google and enthusiasts of automated technology, as it demonstrates that the ability of the vehicles to obey the rules of the road and react to situations that are likely to emerge and require decisions to be made.

google_robotcar_mapIn the video, we see the Google’s car reacting to railroad crossings, large stationary objects, roadwork signs and cones, and cyclists. In the case of the cyclist — not only are the cars able to discern whether the cyclist wants to move left or right, it even watches out for cyclists coming from behind when making a right turn. And while the demo certainly makes the whole process seem easy and fluid, there is actually a considerable amount of work going on behind the scenes.

For starters, there are around $150,000 of equipment in each car performing real-time LIDAR and 360-degree computer vision – a complex and computing-intensive task. The software powering the whole process is also the result of years of development. Basically, every single driving situation that can possibly occur has to be anticipated and then painstakingly programmed into the software. This is an important qualifier when it comes to these “autonomous vehicles”. They are not capable of independent judgement, only following pre-programmed instructions.

BMW 7 Series F01 July 2009 Miramas FranceWhile a lot has been said about the expensive LIDAR hardware, the most impressive aspect of the innovations is the computer vision. While LIDAR provides a very good idea of the lay of the land and the position of large objects (like parked cars), it doesn’t help with spotting speed limits or “construction ahead” signs, and whether what’s ahead is a cyclist or a railroad crossing barrier. And Google has certainly demonstrated plenty of adeptness in the past, what with their latest versions of Street View and their Google Glass project.

Naturally, Google says that it has lots of issues to overcome before its cars are ready to move out from their home town of Mountain View, California and begin driving people around. For instance, the road maps needed to be finely tuned and expanded, and Google is likely to be selling map packages in the future in the same way that apps are sold for smartphones. In the mean time, the adoption of technologies like adaptive cruise control (ACC) and lane keep assist (LKA) will bring lots of almost-self-driving cars to the road over the next few years.

In the meantime, be sure to check out the video of the driverless car in action:


Source:
extremetech.com

The Future is Here: The Copenhagen Wheel

copenhagen_wheelFans of the cable show Weeds ought to instantly recognize this invention. It was featured as a product invented by one of the characters while living (predictably) in Copenhagen. In addition, it was the subject of news stories, articles, design awards, and a whole lot of public interest. People wanted to get their hands on it, and for obvious reasons.

It’s known as the Copenhagen Wheel, a device invented by MIT SENSEable City Lab back in 2009 to electrify the bicycle. Since that time, engineers at MIT have been working to refine it in preparation for the day when it would be commercially available. And that time has come, as a new company called Superpedestrian announced that it has invested $2.1 million in venture capital to make the device available to the public.

copenhagen_wheel1Superpedestrian founder Assaf Biderman, who is also the SENSEable City lab associate director and one of the creators of the wheel, along with lab director Carlo Ratti, had this to say:

The project touched an exposed nerve somehow. Aside from news coverage and design awards, people were wanting it. Over 14,000 people emailed saying ‘I want to buy it, sell it, make it for you.

Three years after inventing it, Biderman finally decided that it was time to spin off a company to make it happen. MIT filed all the relevant patents, and Superpedestrian acquired exclusive licenses to the Copenhagen Wheel technology. And by late November, they plan to launch the wheel to the public for the very first time.

copenhagen_wheel2And though the much of the facts are being carefully guarded in preparation for the release, some details are already known. For example, the wheel can be fitted to almost any bike, is controlled by sensors in the peddles, and has a power assist feature that doesn’t require any work on the part of the rider. And according to Biderman, its range “will cover the average suburban commute, about 15 miles to and from work and back home.”

On top of that, a regenerative braking system stores energy for later use in a lithium battery. The wheel also comes with an app that allows users to control special features from their smartphone. These include being able to lock and unlock the bike, select motor assistance, and get real-time data about road conditions. An open-source platform called The Superpedestrian SDK also exists to allow developers to make on their own apps.

smartwheelrotatingInterestingly enough,the Copenhagen Wheel also has a rival, who’s appearance on the market seems nothing short of conspiratorial. Its competitor, the FlyKly Smart Wheel, a device which has raised over $150,000 on Kickstarter so far. It is extremely similar to the Copenhagen Wheel in most respects, from its electrical assistance to the fact that it can be integrated via smartphone.

According to Biderman, the appearance of the Smart Wheel is just a coincidence, though it is similar to their product. And her company really doesn’t have to worry about competition, since the Copenhagen Wheel has years of brand recognition and MIT name behind it. In terms of the the target audience, Biderman says that they are looking at targeting city dwellers as well as cyclists:

If you’re an urbanite, you can use it to move all around, and go as far as the edges of most cities with this quite easily. You overcome topographical challenges like hills. The point is to attract more people to cycling.

Though no indication has been given how much an individual unit will cost, it is expected to have a price point that’s competitive with today’s e-bikes.

copenhagen_wheel3The FlyKly Smart Wheel, by comparison, can be pre-ordered for $550 apiece. In total, that campaign has raised $301,867 (their original goal was $100,000) since opening on Oct. 16th. As a result, they have been able to reach their first “stretch goal” of producing a 20″ wheel. If they can reach $500,000 before the campaign closes on Nov. 25th, they will be able to deliver on their other goals: a motor brake and a glow in the dark casing.

For some time, designers and engineers have been trying to find ways to make alternative transportation both effective and attractive. Between these designs and a slew of others that will undoubtedly follow, it looks like e-bicycling may be set to fill that void. Combined with electric cars, self-driving cars, hydrogen cars, robotaxis, podcars, and high speed trains, we could be looking at the revolution in transit that we’ve been waiting for.

Sources: fastcoexist.com(2), kickstarter.com

Microsoft Concept Video: The Future of Smartphones and Computers

futurvision5-550x321Ah, I imagine people are getting tired of these. But permit just one more! In the midst of so many new products and developments in the fields of smartphones, tablets, augmented reality, and wireless technology, Microsoft was sure to add its two cents. Releasing this concept video back in 2011, shortly after the Consumer Electronics Show, amidst all the buzz over flexible screens and paper-thin displays, Microsoft produced this short entitled “Productivity Future Vision”.

In addition to showcasing their Window Phone (shameless!), the video also features display glasses, “smart” windows, self-driving cars, 3D display technology, virtual interfacing, paper-thin and flexible display tablets, touchscreens, teleconferencing, and a ton of internet browsing and wireless connectivity. All of the technologies featured are those that are currently under development, so the video is apt in addition to being visually appealing.

But of course, the real purpose of this video is to demonstrating to the world that Microsoft can bring these technologies and build the future of business, travel, education and play. Or at the very least, they seeks to lay their claim to a good portion of it. It’s Microsoft, people, they didn’t get to being a mega-corporation by writing checks or playing nice.

And based on this video, what can be said about the future? All in all, it looks a lot like today, only with a lot more bells and whistles!

Envisioning Emerging Technology

Where are we headed when it comes to technology? Which fields will advance before others? When will certain devices and tools be available? How long before we can expect things like flying cars, interactive holograms, space travel, and intelligent robots? These are the questions currently being addressed by Envisioning Technology and its founder, Mitchell Zappa.

The purpose is pretty straightforward: by examining the wider context, one can see not only where technology is going in the near future, but how developments in one field will stimulate others. Once we have a better understanding of what lies ahead, according to Zappa, we can make better decisions of what to create today.

To illustrate this, ET has prepared a helpful interactive infographic, one which allows users to hover over an item and see a detailed description. The target dates range from 2012 to 2040, beginning with tablets and cloud computing and culminating in the development of Avatars, Space Elevators, and AIs. Some additional predictions include:

  • 2018: Self-driving cars
  • 2019: Space tourism
  • 2026: Domestic robots
  • 2030: Blood-powered displays embedded into human skin
  • 2033: Remote presence
  • 2035: Human missions to Mars
  • 2035: Thorium reactors
  • 2036: Space elevators
  • 2036: Climate engineering
  • 2037: Anti-aging drugs
  • 2039: Nanotechnology utility fogs
  • 2040: Arcologies (massive cities)

For a more detailed breakdown and description, check out the infographic below, or follow the link to the website for a more detailed interactive experience: