The Future is Here: Sweat-Powered Smart Tatoo

smart_tatoosSmart tattoos are the hot ticket item of modern medicine, combining ultra-thin electronics with flexible materials. When they become commonplace, they will be a great way to monitor vital signs and health. The only thing that seems to be holding them back, is finding a way to power them. Tiny batteries are one possibility, but lack practicality, and microwaves are several years away from being feasible.

Luckily, Joseph Wang – a researchers from UCSD – has come up with a way to generate power for these devices without using any external equipment. The secret, is to harness electrons from lactate acid secreted in sweat. These acids are produced when our muscles work to exhaustion, a waste product that causes muscles to “burn”, but which the brain thrives upon. Hence why it is the endpoint in lactate’s metabolization cycle.

https://i0.wp.com/www.extremetech.com/wp-content/uploads/2014/08/Tattoo-640x353.jpgWhen lactate was discovered to be released in sweat, exercise physiologists began developing sensor technology to measure its levels in the sweat and blood. Wang has taken the next logical step of adding provisions to accumulate charge when lactate is enzymatically sensed. By embedding enzymes that process lactate into the tattoo, he was able to extract 70 microwatts per cm² of skin.

The only catch with this tattoo is that you need to be hot – as in pedaling your heart out on a bike for 30 minutes – to get the lactate out. That, however, may not be a barrier to this technology, since it is possible to selectively activate the sympathetic nerves that control the sweat glands in a discrete patch of skin. That way, you override the normal control and can sweat without the heat or exertion.

flexible_elecThe other part of the puzzle would be to actually generate the lactic acid. Preferably, this would be done locally as well, rather than having to have high levels circulating in the blood. But in the end, such steps would not even be necessary considering that a vitals and health monitoring that occurs into a workout – after an initial warm-up and good sweat have taken place – could be just what the doctor ordered (no pun intended!).

Other researchers have already imagined e-tattoos to read your thoughts and desires, either by reading unvocalized words or EEG readings. And compared to past generations of sensor devices, these tattoos represent a sophisticated electronic package with on-board signal processing and communications. With a discrete way to power such devices, a formidable tool for self discovery might be had.


Source:
extremetech.com
, acs.org

The Future of Medicine: 3D Printing and Bionic Organs!

biomedicineThere’s just no shortage of breakthroughs in the field of biomedicine these days. Whether it’s 3D bioprinting, bionics, nanotechnology or mind-controlled prosthetics, every passing week seems to bring more in the way of amazing developments. And given the rate of progress, its likely going to be just a few years before mortality itself will be considered a treatable condition.

Consider the most recent breakthrough in 3D printing technology, which comes to us from the J.B Speed School of Engineering at the University of Louisville where researchers used a printed model of a child’s hear to help a team of doctors prepare for open heart surgery. Thanks to these printer-assisted measures, the doctors were able to save the life of a 14-year old child.

3d_printed_heartPhilip Dydysnki, Chief of Radiology at Kosair Children’s Hospital, decided to approach the school when he and his medical team were looking at ways of treating Roland Lian Cung Bawi, a boy born with four heart defects. Using images taken from a CT scan, researchers from the school’s Rapid Prototyping Center were able to create and print a 3D model of Roland’s heart that was 1.5 times its actual size.

Built in three pieces using a flexible filament, the printing reportedly took around 20 hours and cost US$600. Cardiothoracic surgeon Erle Austin III then used the model to devise a surgical plan, ultimately resulting in the repairing of the heart’s defects in just one operation. As Austin said, “I found the model to be a game changer in planning to do surgery on a complex congenital heart defect.”

Roland has since been released from hospital and is said to be in good health. In the future, this type of rapid prototyping could become a mainstay for medical training and practice surgery, giving surgeons the options of testing out their strategies beforehand. And be sure to check out this video of the procedure from the University of Louisville:


And in another story, improvements made in the field of bionics are making a big difference for people suffering from diabetes. For people living with type 1 diabetes, the constant need to extract blood and monitor it can be quite the hassle. Hence why medical researchers are looking for new and non-invasive ways to monitor and adjust sugar levels.

Solutions range from laser blood-monitors to glucose-sensitive nanodust, but the field of bionics also offer solutions. Consider the bionic pancreas that was recently trialled among 30 adults, and has also been approved by the US Food and Drug Administration (FDA) for three transitional outpatient studies over the next 18 months.

bionic-pancreasThe device comprises a sensor inserted under the skin that relays hormone level data to a monitoring device, which in turn sends the information wirelessly to an app on the user’s smartphone. Based on the data, which is provided every five minutes, the app calculates required dosages of insulin or glucagon and communicates the information to two hormone infusion pumps worn by the patient.

The bionic pancreas has been developed by associate professor of biomedical engineering at Boston University Dr. Edward Damiano, and assistant professor at Harvard Medical School Dr. Steven Russell. To date, it has been trialled with diabetic pigs and in three hospital-based feasibility studies amongst adults and adolescents over 24-48 hour periods.

bionic_pancreasThe upcoming studies will allow the device to be tested by participants in real-world scenarios with decreasing amounts of supervision. The first will test the device’s performance for five continuous days involving twenty adults with type 1 diabetes. The results will then be compared to a corresponding five-day period during which time the participants will be at home under their own care and without the device.

A second study will be carried out using 16 boys and 16 girls with type 1 diabetes, testing the device’s performance for six days against a further six days of the participants’ usual care routine. The third and final study will be carried out amongst 50 to 60 further participants with type 1 diabetes who are also medical professionals.

bionic_pancreas_technologyShould the transitional trials be successful, a more developed version of the bionic pancreas, based on results and feedback from the previous trials, will be put through trials in 2015. If all goes well, Prof. Damiano hopes that the bionic pancreas will gain FDA approval and be rolled out by 2017, when his son, who has type 1 diabetes, is expected to start higher education.

With this latest development, we are seeing how smart technology and non-invasive methods are merging to assist people living with chronic health issues. In addition to “smart tattoos” and embedded monitors, it is leading to an age where our health is increasingly in our own hands, and preventative medicine takes precedence over corrective.

Sources: gizmag.com, (2)

The Future is Here: Paper Thin, Flexible Batteries

flexbatteryAs Yogi Berra would say, “It’s like deja vu, all over again.” Designed to be paper thin, flexible, and printable using a 3D printer device, this latest advancement combines several technological breakthroughs into one package. But instead of being a display device, a PDA, a smartphone, or some high-tech component, this latest piece of future tech is a simple battery. And in a world where technology is becoming increasingly smart, thin and ergonomic, it just may be the way of the future for electrical devices.

Well, simple might be a bit of a stretch. Developed by Imprint Energy, the key piece of technology here is a polymer electrolyte that allows the zinc-based battery to be recharged. In typical batteries, liquid electrolytes are used, which tend to experience the formation of “fingers” which bridge across the lithium interior of the battery and make charging impossible. But in this case, the flexible and customizable zinc anode, electrolyte, and metal oxide cathode of the battery are printed in the form of electrochemical inks.

This is turn leads to the creation of a battery that is not only flexible and printable, but also rechargeable, safer, cheaper, and more powerful than anything currently on the market. The printing process is similar to old-fashioned silk-screening where material is deposited in a pattern by squeezing it through a mesh over a template. While this screen printing is different from what we tend to think of nowadays as 3D printing, it is in keeping with the concept of printing where manufacturing is done on the micro-level, leading to the creation of all kinds of consumer products.

smart-tattooAnd like all technological advancements, this one occurred not in a vacuum but amidst a backdrop of cool and interesting breakthroughs. For example, numerous tech c0mpanies and start-ups are using screen printing to fabricate electronic components that will address the need for cheap and disposable electronics in the next few years.

Norway-based Thin Film Electronics is one such group, which has created a prototype all-printed devices that includes temperature sensors, memory, logic, and uses Imprint Energy’s new battery. In addition, smart tattoos are being created to monitor patient vitals, blood pressure, pulse rate, and blood glucose levels. Printable “smart stickers” for time-sensitive food or medicines are being contemplated as well, patches that would be able to store details of  a products temperature, chemical exposure, freshness, and history of shock and vibe during handling.

All of this, coupled with ultra-thin devices, could led to a future where all devices and electronics are the size of a business card, as thin as a sheet of construction paper, and can be worn on a person’s body. Hey, there’s a reason they call it “smart technology” 😉

Source: Extremetech.com

 

The Future is Here: Smart Tattoos!

electronic_skin_patchIn recent years, scientists have been working towards electronics that come in flexible and ultra-thin packages. Back in 2011, this bore fruit as researchers from the University of Illinois unveiled the world’s first health monitoring patch, an ultra-thin device which looked like a temporary tattoo, but packed enough sensors in its flesh to monitor a person’s vitals. As a testament to the rate at which technological developments happen these days, improvements are already being made on the concept and design.

For example, a team of researchers from the University of Toronto and the University of California recently announced the creation of what they are calling the “smart tattoo”.  This device is a step up from the previous one, as it contains “ion-selective electrodes” which go beyond monitoring just your vitals. According to the collaborative team, this patch is made up of “sensors that detect the pH or salt levels of the skin, as well minerals like potassium, and even blood oxidation.”

In other words, this patch can monitor athletic performance at a granular level, but without any of the bulk or wiring of older sensors. It also means that for the first time, detailed athletic response testing would no longer be limited to the walls of a sports clinic, but could be done daily by the athlete herself. What’s more, the nature of the design and relative cost are in keeping with a mass production model and mass market appeal.

bloodstreamThis last aspect is an important indicator since one of the hallmarks of technological progress is the ability to create devices which go beyond matters of life and death and are able to address our daily concerns. In addition to proving that the technology is becoming more commonplace, it’s also a sign of growing affordability and availability. With this latest development, it seems that smart tattoos are doing just that.

Another example comes from Sano intelligence, a 2012 health startup that announced that they are in the testing phase of a smart tattoo that reads a wearer’s blood markers. This patch would be especially useful to diabetics, for whom blood monitoring is a constant hassle and often required invasive measures, such as needles. If the patch proves successful, diabetics everywhere would not only be able to forgo finger pricking and needles, but would also be freed of the burden of having to carry around bulky devices.

stretchable-electronicsFinally, there was the news from Cambridge Massachusetts, where another startup company named MC10 announced early in 2012 that they had created a “stretchable electronics” patch that was applicable not only to skin, but to human clothing and even organs. By mounting nanoscale electronics to a flexible, stretchable patch, the company hopes to be able to produce sensors that can monitor any number of health functions, from the more mundane things like heart-rate and hydration, to brain, heart, tissue, and organ function.

What is especially exciting about all of this is not so much the technology involved, but the fact that it is leading to an era where patients will have a far greater degree of control over their own health and monitoring. No longer will we be dependent on clinics and doctors for every single matter relating to our health, from checkups to surgery. Now we can take care of the former ourselves, making our information available to our doctor or specialist as needed, and going in for only serious or life-threatening procedures. This, in addition to leading to a more health-conscious public, could also bode well for medical costs.

Sources: takepart.com, technologreview.com, factcoexist.com