A Tribute to Israeli Scientific Achievements

jerusalem_israelWelcome everyone to my first special-request piece! As some of you who read this blog regularly may know, I was recently done a solid by a friend who brought the existence of my latest book (Whiskey Delta) to the attention of Max Brooks, Mr. World War Z man himself! Because of this, I told him he was entitled to favor, redeemable whenever he saw fit. Especially if the favor he did me allowed me to make it big!

Emblem_of_Israel.svgMuch to my surprise, he called it in early. Yes, instead of waiting for me to become a success and demanding 50 grand and pony, he asked that I do a tribute piece in honor of Israeli Independence Day, one that acknowledges the collective scientific, medical and technological achievements of this nation.

So hang tight. Not the easiest thing in the world to sum up an entire nation’s contributions in several fields, but I shall try. And for the sake of convenience, I broke them down into alphabetical order. So to my Israeli readers and those with family in the Levant, Shalom Aleichem, and here we go!

Aerospace:
GurwinTechSatModel
When it comes to space-based research, aviation and aeronautics, Israel has made many contributions and is distinguished as one of the few nations outside of the – outside of the major space players – that is able to build and launch its own communications, navigation and observation satellites. This is performed through the Israel Aerospace Industries(IAI), Israel’s largest military engineering company, in cooperation with the Israel Space Agency, which was created in 1982.

What’s more, Technion, the Israeli Institute of Technology,  is home to the Asher Space Research Institute (ASRI), which is unique in Israel as a university-based center of space research. In 1998, the Institute built and launched its own satellite – known as the Gerwin-II TechSAT – in July 1998 to provide communications, remote sensing and research services for the nation’s scientists.

Israel’s first ever satellite, Ofeq-1, was built and launched using the locally-built Shavit launch vehicle on September 19, 1988. Over the course of its operational history, Ofeq-1 has made important contributions in a number of areas in space research, including laser communication, research into embryo development and osteoporosis in space, pollution monitoring, and mapping geology, soil and vegetation in semi-arid environments.

AMOS-1 and AMOS-2, which were launched in 1996 and 2003 respectively. AMOS-1 is a geostationary satellite that also has the honor of being Israel’s first commercial communications satellite, built primarily for direct-to-home television broadcasting, TV distribution and VSAT services. AMOS-2, which belongs to the Spacecom Satellite Communications company, provides satellite telecommuncations services to countries in Europe, the Middle East and Africa.

Additional space-based projects include the TAUVEX telescope, the VENUS microsatellite, and the MEIDEX (Mediterranean – Israel Dust Experiment), which were produced and launched in collaboration the Indian Space Research Organizations (ISRO), France’s CNES, and NASA, repsectively. In addition to conducting research on background UV radiation, these satellites are also responsible for monitoring vegetation and the distribution and physical properties of atmospheric desert dust over the a large segment of the globe.

Ilan_RamonIlan Ramon, Israel’s first astronaut, was also a member of the crew that died aboard the Space Shuttle Columbia. Ramon was selected as the missions Payload Specialist and trained at the Johnson Space Center in Houston, Texas, from 1998 until 2003.  Among other experiments, Ramon was responsible for the MEIDEX project in which he took pictures of atmospheric aerosol (dust) in the Mediterranean. His death was seen as a national tragedy and mourned by people all over the world. 

According to the Thomson Reuters agency, in a 2009 poll, Israel was ranked 2nd among the 20 top countries in space sciences.

Alternative Fuel and Clean Energy:
When it comes to developing alternative sources of energy, Israel is a leader in innovation and research. In fact – and due in no small part to its lack of conventional energy resources – Israel has become the world’s largest per capita user of solar power, with 90% of Israeli homes use solar energy for hot water, the highest per capita in the world.

Solar_dish_at_Ben-Gurion_National_Solar_Energy_Center_in_IsraelMuch of this research is performed by the Ben-Gurion National Solar Energy Center, a part of the Ben-Gurion University of the Negev (in Beersheba). Pictured above is the Ben-Gurion parabolic solar power dish, the largest of its kind in the world. In addition, the Weizman Institute of Science, in central Israel, is dedicated to research and development in the field of solar technology and recently developed a high-efficiency receiver to collect concentrated sunlight, which will enhance the use of solar energy in industry as well.

Outside of solar, Israel is also heavily invested in the fields of wind energy, electric cars, and waste management. For example, Israel is one of the few nations in the world that has a nationwide network of recharching stations to facilitate the charging and exchange of car batteries. Denmark and Australia have studied the infrastructure and plan to implement similar measures in their respective countries. In 2010, Technion also established the Grand Technion Energy Program (GTEP), a multidisciplinary task-force that is dedicated to alternative fuels, renewable energy sources, energy storage and conversion, and energy conservation.

Private companies also play a role in development, such as the Arrow Ecology company’s development of the ArrowBio process, which takes trash directly from collection trucks and separates organic from inorganic materials. The system is capable of sorting huge volumes of solid waste (150 tons a day), salvaging recyclables, and turning the rest into biogas and rich agricultural compost. The system has proven so successful in the Tel-Aviv area that it has been adopted in California, Australia, Greece, Mexico, and the United Kingdom.

Health and Medicine:
Israel also boasts an advanced infrastructure of medical and paramedical research and bioengineering facilities. In terms of scientific publications, studies in the fields of biotechnology, biomedical, and clinical research account for over half of the country’s scientific papers, and the industrial sector has used this extensive knowledge to develop pharmaceuticals, medical equipment and treatment therapies.

In terms of stem cell research, Israel has led the world in the publications of research papers, patents and studies per capita since the year 2000. The first steps in the development of stem cell studies occurred in Israel, with research in this field dating back to studies of bone marrow stem cells in the early 1960s. In 2011, Israeli scientist Inbar Friedrich Ben-Nun led a team which produced the first stem cells from endangered species, a breakthrough that could save animals in danger of extinction.

capsule_camNumerous sophisticated medical advancements for both diagnostic and treatment purposes has been developed in Israel and marketed worldwide, such as computer tomography (CT) scanners, magnetic resonance imaging (MRI) systems, ultrasound scanners, nuclear medical cameras, and surgical lasers. Other innovations include a device to reduce both benign and malignant swellings of the prostate gland and a miniature camera encased in a swallowable capsule used to diagnose gastrointestinal disease.

ReWalkIsrael is also a leading developer of prosthetics and powered exoskeletons, technologies designed to restore mobility to amputees and people born without full ambulatory ability. Examples include the SmartHand, a robotic prosthetic hand developed through collaboration between Israeli and European scientists. ReWalk is another famous example, a powered set of legs that help paraplegics and those suffering from partial paralysis to achieve bipedal motion again.

Science and Tech:
In addition, Israeli universities are among 100 top world universities in mathematics (Hebrew University, TAU and Technion), physics (TAU, Hebrew University and Weizmann Institute of Science), chemistry (Technion and Weizmann Institute of Science), computer science (Weizmann Institute of Science, Technion, Hebrew University, TAU and BIU) and economics (Hebrew University and TAU).

 

Ilse Katz Institute for Nanoscale Science and Technology - Ben-Gurion University
Ilse Katz Institute for Nanoscale Science and Technology – Ben-Gurion University

Israel is also home to some of the most prestigious and advanced scientific research institutions in the world. These include the Bar-Ilan University, Ben-Gurion University of the Negev, the University of Haifa, Hebrew University of Jerusalem, the Technion – Israel Institute of Technology, Tel Aviv University and the Weizmann Institute of Science, Rehovot, the Volcani Institute of Agricultural Research in Beit Dagan, the Israel Institute for Biological Research and the Soreq Nuclear Research Center.

Israel has also produced many Noble Prize Laureates over the years, four of whom won the Nobel Prize for Chemistry. These include Avram Hershko and Aaron Ciechanover of the Technion, two of three researchers who were responsible for the discovery ubiquitin-mediated protein degradation in 2004. In 2009, Ada Yonath of the Weizmann Institute of Science was one of the winners for studies of the structure and function of the ribosome. In 2011, Dan Shechtman of the Technion was awarded the prize for the discovery of quasicrystals.

Koffler Accelerator - Weizman Institute of Science
Koffler Accelerator – Weizman Institute of Science

In the social sciences, the Nobel Prize for Economics was awarded to Daniel Kahneman in 2002, and to Robert Aumann of the Hebrew University in 2005. Additionally, the 1958 Medicine laureate, Joshua Lederberg, was born to Israeli Jewish parents, and 2004 Physics laureate, David Gross, grew up partly in Israel, where he obtained his undergraduate degree.

In 2007, the United Nations General Assembly’s Economic and Financial Committee adopted an Israeli-sponsored draft resolution that called on developed countries to make their knowledge and know-how accessible to the developing world as part of the UN campaign to eradicate hunger and dire poverty by 2015. The initiative is an outgrowth of Israel’s many years of contributing its know-how to developing nations, especially Africa, in the spheres of agriculture, fighting desertification, rural development, irrigation, medical development, computers and the empowerment of women.

Water Treatment:
WaTecAnd last, but certainly not least, Israel is a leader in water technology, due again to its geography and dependence and lack of resources. Every year, Israel hosts the Water Technology Exhibition and Conference (WaTec) that attracts thousands of people from across the world and showcases examples of innovation and development designed to combat water loss and increase efficiency.

Drip irrigation, a substantial agricultural modernization, was one such developed which comes from in Israel and saved countless liters of farm water a year. Many desalination and recycling processes have also emerged out of Israel, which has an abundance of salt water (such as in the Dead Sea and Mediterranean), but few large sources of freshwater. The Ashkelon seawater reverse osmosis (SWRO) plant, the largest in the world, was voted ‘Desalination Plant of the Year’ in the Global Water Awards in 2006.

In 2011, Israel’s water technology industry was worth around $2 billion a year with annual exports of products and services in the tens of millions of dollars. The International Water Association has also cited Israel as one of the leaders in innovative methods to reduce “nonrevenue water,” (i.e., water lost in the system before reaching the customer). By the end of 2013, 85 percent of the country’s water consumption will be from reverse osmosis, and as a result of innovations in this field, Israel is set to become a net exporter in the coming years.

Summary:
It’s hard to sum up the accomplishments of an entire nation, even one as young and as geographically confined as Israel. But I sincerely hope this offering has done some justice to the breadth and width of Israel’s scientific achievements. Having looked though the many fields and accomplishments that have been made, I have noticed two key features which seem to account for their level of success:

  1. Necessity: It’s no secret that Israel has had a turbulent history since the foundation of the modern nation in 1948. Due to the ongoing nature of conflict with its neighbors and the need to build armaments when they were not always available, Israel was forced to establish numerous industries and key bits of infrastructure to produce them. This has had the predictable effect of spilling over and inspiring developments in the civilian branches of commerce and development as well. What’s more, Israel’s location in a very arid and dry region of the world with few natural resources to speak of have also demanded a great deal of creativity and specialized resource management. This in turn has led to pioneering work in the fields of energy, sustainable development and agricultural practices which are becoming more and more precious as Climate Change, population growth, hunger and drought effect more and more of the world.
  2. Investment: Israel is also a nation that invests heavily in its people and infrastructure. Originally established along strongly socialist principles, Israel has since abandoned many of its establishment era practices – such as kibbutz and equality of pay – in favor of a regulated free market with subsidized education and health care for all. This has led to a successive wave of generations that are strong, educated, and committed to innovation and development. And with competition and collaboration abroad, not to mention high demand for innovation, this has gone to good use.

And with that, I shall take my leave and wish my Israeli readers at home and abroad a happy belated Independence Day! May peace and understanding be upon you and us all as we walk together into the future. Shalom Aleichem!

Powered by the Sun: The Ion Cannon Solar Panel

solar5Hello and welcome back to my ongoing series of PBTS, dedicated to all the advancements being made in solar power. Today’s entry is an interesting one, and not just because it involves an ion cannon… well sort of! It comes to us courtesy of Twin Creeks, a solar power startup that has come up with a revolutionary way to generate photovoltaic cells that are half the price of those currently found on the market.

For many decades, solar power has been held back due to the fact that the cost has been prohibitive compared to fossil fuels and coal. By offering yet another way of cutting the cost of their production, Twin Creeks is bringing this clean alternative one step closer to realization. Ah, but here’s the real kicker: turns out that this revolutionary process involves a hydrogen ion particle accelerator!

hyperion-particle-accelerator1-640x353As has been mentioned in this series before, conventional solar cells are made from slicing 200-micrometer-thick (0.2mm) sections of silicon wafer from a large block. Then electrodes are added, a sheet of protective glass is placed on top, and they are placed in the sun to generate electricity. But of course, this approach has two serious drawbacks. One, a great deal of silicon is wasted in the production process. Two, the panels would if they were thinner than 200 micrometers, but silicon is brittle and prone to cracking if it’s too thin.

And this is where Twin Creeks ion cannon, aka. Hyperion, comes into play. It’s starts with a series of 3-millimeter-thick silicon wafers being placed around the outside edge of the big, spoked wheel (see above). The particle accelerator then bombards these wafers with hydrogen ions and, with exacting control of the voltage of the accelerator, the hydrogen ions accumulate precisely 20 micrometers from the surface of each wafer.

twin-creeks-hyperion-wafer-ii-flexibleA robotic arm then transports the wafers to a furnace where the ions expand into hydrogen gas, which cause the 20-micrometer-thick layer to shear off. A metal backing is applied to make it less fragile as well as highly flexible (as seen on the right). The remaining silicon wafer is taken back to the particle accelerator for another dose of ions. At a tenth of the thickness and with considerably less wastage, it’s easy to see how Twin Creeks can halve the cost of solar cells.

This process has been considered before, but the cost of a particle accelerator has always been too high. However, Twin Creeks got around this by building their own, one which is apparently “10 times more powerful” (100mA at 1 MeV) than anything on the market today. Because of this, they are able to guarantee a product that is half the cost of solar cells currently coming out of China. At that price, solar power truly begins to encroach on standard, fossil-fuel power.

But, of course, there still needs to be some development made on producing solar cells that can store energy overnight. Weather strictures, such as the ability to generate electricity only when its sunny out, remains another stumbling block that must be overcome. Luckily, it seems that there are some irons in that fire as well, such as research into lithium-ion and nanofabricated batteries. But that’s another story and another post altogether 😉

Stay tuned for more sun-powered hope for the future!

Source: Extremetech.com