The Glucose Economy

hacking-bacteria-fuel-ecoli-670In the long search to find alternatives to fossil fuels and industrial processes that produce tons of waste, several ideas have been forward. These include alternative energy – ranging from solar, wind, geothermal, and tidal – additive manufacturing, and cleaner burning fuels. All of these ideas have begun to bear some serious fruit in recent years thanks to ongoing research and development. But looking to the long term, it is clear that a complete overhaul of our industrial economy is needed.

That’s where more ambitious ideas come to the fore, ideas like nanotechnology, biotechnology, and what’s known as the “Glucose Economy”. Coined by Steven Chu, a Nobel Prize-winning Chinese-American physicist who also had the honor of serving as the 12th Secretary of Energy under Barack Obama, this concept calls for the development of an economic model that would replace oil with high-glucose alternative fuels.

110302_steven_chu_ap_328Chu conceived of the idea while working as a professor of physics and molecular and cellular biology at the University of California, Berkeley. In short, the plan calls for fast-growing crops to be planted in the tropics – where sunlight is abundant – converted into glucose (of which cellulose, which makes up much of the dry weight of a plant, is a polymer). The resulting glucose and cellulose would then be shipped around much as oil is today, for eventual conversion into biofuels and bioplastics.

As expected, this would render the current system of converting oil into gasoline and plastics – a process which produces immense amounts of carbon dioxide through processing and burning – obsolete. By comparison, glucose fuels would burn clean and produce very little in the way of chemical by-products, and bioplastics would be far more resilient and eco-friendly than regular plastics, and not just because they won’t cause a terrible disposal and waste problem (see Garbage Island).

David-Benjamin-and-the-future-of-architecture-01Another benefit of the this new model is the economic development it will bring to the tropical regions of the world. As far as production is concerned, those regions that stand to benefit the most are Sub-Saharan Africa, Central and South America, and South-East Asia. These regions are already seeing significant economic growth, and a shift like this would ensure their continued growth and development (not to mention improved quality of life) for many generations  to come.

But above and beyond all that is the revolutionary potential that exists for design and manufacturing, with architects relying on specially-designed software to create multi-material objects fashioned in part from biomass. This unique combination of biological processes, computer-assisted design (CAD), and human intelligence is looking to trigger a revolution in manufacturing and construction, with everyday materials to buildings created from eco-friendly, structurally sound, biomaterials.

bio-buildingOne such architect is David Benjamin, a computational architect and principal of the New York-based practice The Living. Together with his collaborators, Benjamin is conducting experiments with plant cells, the latest of which is the production of xylem cells – long hollow tubes plants use to transport water. These are computer modeled and grown in a Cambridge University lab and studied to create materials that combine the desired properties of different types of bacteria.

In addition, they are working with sheets of calcium and cellulose, seeking to create structures that will be strong, flexible, and filigreed. And beyond The Living Thing, there are also initiatives like the Living Foundries Program, a Department of Defense initiative that is hoping to hasten the developmental process and create an emergent bio-industry that would create “on-demand” production.

1394231762-re-making-manufacturing-united-statesNot only would this shave decades off the development process, but also hundreds of millions of dollars. What’s more, Benjamin claims it could take only 8 to 10 years to see this type of biotechnology enter commercial production. Naturally, there are those who oppose the development of a “glucose economy” as advocated by Chu. Beyond the proponents of fossil fuel energy, there are also those advocate nationally self-sufficient resources bases, rather than foreign dependence.

To these critics, the aim of a future economy should be energy independence. In their view, the glucose economy is flawed in that it merely shifts energy dependence of nations like the US from the Middle East and OPEC to the tropics, which could create a whole new slew of geopolitical problems. However, one cannot deny that as alternatives go, Chu’s proposal is far preferable to the current post-peak oil model of frakking, tar sands, natural gas, and coal.

bio-building1And it also offers some new and exciting possibilities for the future, where building processes like additive manufacturing (which is already making inroads into the construction industry with anti-gravity 3D printing, and the KamerMaker House) would be supplemented by using “biohacked” bacteria to grow structures. These structures would in turn be composed of resilient materials such as cellulose and organic minerals, or possibly carbon nanotubes that are assembled by organic processes.

And the amount of money, waste, energy and lives saved would be immense, as construction is currently one of the most dangerous and inefficient industries on the planet. In terms of on the job accidents, it causes some 10,000 deaths and 400,000 injuries a year in the US alone. And in terms of resource allocation and money, construction is labor intensive, produces tons of waste, and is almost always over budget.

hacking-bacteria-bio-light-670Compared to all that, a system the utilizes environmentally-friendly molecules and materials, enhances growing operations, fostered greater development and economic cooperation, and leads to a safer, cheaper, less wasteful construction industry seems immensely preferable. And it does offer a solution of what to do about two major industries that are ailing and in desperate need of modernization.

Boy, it feels like a long time since i’ve done a conceptual post, and the topics do appear to be getting more and more serious. Can anyone recall when I used to do posts about Cool Ships and Cool Guns? Yeah, me too, vaguely. Somehow, stuff like that seems like a far cry from the Internet of Things, Interstellar Travel, O’Neill Cylinders, Space Elevators, and timelines of the future. I guess this little blog of mine has been growing up in recent years, huh?

Stay tuned for more conceptual posts, hopefully something a little lighter and fluffier next time 😉


Towards a Cleaner Future: Fuel Cell Breakthrough!

hydrogen-fuel-cellOne of the greatest challenges facing renewable energy is making it affordable and cost effective, to the point where it will naturally offset such sources as fossil fuels and coal. And when it comes to hydrogen fuel cells, a recent development may have accomplished just that. Quite surprising when you consider that it came from Alberta, home of the Athabasca Oil Sands and an output of roughly 4 million barrels of crude a day.

It all happened late last month, when researchers at the University of Calgary published a paper in the Journal of Science that they had come up with a much cheaper and easier way to build an electrolyzer. This is the device that uses electricity to break up water into hydrogen and oxygen, which are then used to power hydrogen fuel cells.

Picture shows the refuelling hydrogen syFor some time now, these fuel cells have been considered the most promising means of powering automobiles with a clean, renewable energy source. By recombining the two basic elements of hydrogen and oxygen, energy is generated and the only waste product is water. The only difficulty is the means of production, as electrolyzers often depend on expensive and sometimes toxic metals.

The most common of current methods involves the use of expensive rare earth metals in precise crystalline arrangements to catalyze, or speed up, the reaction. But with the new process developed by Chris Berlinguette and Simon Trudel comes into play, which involves catalyzers built out of common metals without the need for the crystal structure, the process will not only be vastly simplified but extremely cheaper.

solar_arrayBased on the estimates presented in their paper, Trudel and Berlinguette estimate that their new eletrolyzer will deliver results comparable to current techniques but at a cost of about one-one-thousandth the norm. The implications for clean, renewable energy,  such as wind or solar generators, could be enormous. Not only would it be far cheaper and more efficient, there would be far less toxic waste materials produced.

Not only that, but another major stumbling block for clean energy could be overcome. As is the case with just about any type of renewable power source – wind, solar, tidal – is that it is dependent on conditions which limit when power can be generated. But stored hydrogen energy can be used at anytime and could easily replace gas and coal, just as long as the production process is cost-effective.

hydrogencarAs Berlinguette himself pointed out, making and electrolyzer cost-effective means being able to produce power on demand and to scale:

If you think of a wind turbine producing electricity at two o’clock in the morning, there’s no one around to actually use that electricity, so it just gets dumped. If you could set that up with an electrolyzer, you could convert that electricity into hydrogen, then the next day, when there is demand, you can sell that electricity at a premium during periods of high demand.

In anticipation of the inevitable investment this will attract, Berlinguette and Trudel have already formed a company called FireWater Fuel Corp. to market their work and expect to have a commercially available electrolyzer by next year. So for those of you with money to invest and a socially-responsible, environmental outlook, get out your check books out and be prepared to invest!