Ann Makosinski and I Have a Chat!

Ann-Makosinski-Google-Science-Fair-2It’s a rare thing when a humble blogger like yours truly gets the chance to speak to someone who has truly made a difference in the world. And this time around, that person is Ann Makosinki, inventor of the body heat-powered flashlight and winner of last year’s Google Science Fair. In addition to being a young inventor, she also happens to hail from my neck of the woods here in Victoria, British Columbia. So you can imagine the enthusiasm I felt when she agreed to this interview!

As many of you may already know  – since you all faithfully read this blog 😉 – Ann Makosinki is winner of the 2013 Google Science Fair Award for her invention that uses the warmth of a person’s own hand to power an LED flashlight. Using Peltier tiles, which produce electricity when heated on one side and cooled on the other, she developed a flashlight which she believes will be of use in the developing world where electrical outlets and batteries are not always available.

body_heat_flashlightAnn’s inspiration comes from her commitment to science, renewable energy, the environment, and her roots in the Philippines. Ultimately, her goal is to bring light and energy to those who live without it all over the world. After winning the gold medal at the 2013 Canada-Wide Science Fair Gold Medal, her flashlight won at the Google Science Fair’s top prize of a $25,000 scholarship and the choice of a “once-in-a-lifetime experience” from CERN, LEGO or Google.

In addition, she has been a keynote speaker at TEDx in three different cities (Vancouver, Redmond and Edmonton), at Techtoria here in Victoria, earned a spot on Jimmy Fallon Live, and will be representing Canada at the 2014 International Science and Engineering Fair this coming May. The following is a transcript of our interview, which occurred via email in spite of her (very) busy schedule:

1. When did you first discover your love for science? What are some of your earliest memories of doing something science-related?

My love for science started when I was very young. My first toy was actually a box of transistors! I was always also interested in insects, and used to collect them and keep them in jars. I would feed them and spray them each morning before I would head out to school. My parents were very supportive of my interests, even if I was looking through the garbage, hot gluing disposed objects together and creating “inventions” (of course nothing ever worked). My dad also always took me to the local island science fair, and I was very shy to ask the other kids questions, but I always thought it was so cool that they had chosen their own topic in science and now were presenting on it.

2. When did you take part in your first science fair? What was your project?

I started participating in the local science fair, the Vancouver Island Regional Science Fair, when I was in grade 6. My science project was one from that I had done in class, comparing two laundry detergents.

3. How did you come to be interested in renewable energy?

I realized early on that energy is a key issue in today’s world, because of our increased reliance on energy and its effect on global warming. It is a challenging problem, and I wished to explore alternative energy sources and find solutions. I focused on the problem of battery elimination, because that’s something I understand and can think around.

4. You’re invention of the body-heat powered flashlight was a big hit at the 2013 Google Science Fair. What was it like competing with people your age who have such a passion for science?

For me, it wasn’t about competing with the other people, but more of getting know them and seeing how we were all alike in some ways. It inspired me to see how passionate they were about science, and while we could have conversations about technical aspects that I usually wouldn’t get to talk about with my friends, they were all still like normal teenagers.

5. This past December you were named one of Time Magazines Top 30 under 30. What other accolades have you earned since winning at the Google Fair?

Hmm, well I have given three TEDx talks since then and many other speeches locally. I have had numerous interviews/film crew from US and Europe making short documentaries. I also appeared on the Tonight Show with Jimmy Fallon’s during the show’s premiere week, and I have a few more things lined up. However, I think what matters most to me is the fact that my project has brought so much awareness to the problem of people without electricity, and to the potential that thermoelectricity has.

6. Since winning at Google Fair, you’ve presented at TEDx RenfrewCollingwood, the Techtoria conference in Victoria, and got a spot on Jimmy Fallon Live. Is it fair to say your life has changed since debuting your invention? Do you feel like a celebrity?

I definitely do not feel like a celebrity. Sure, I get recognized once in a blue moon, or people want to have their picture with me, but I know that will soon end. I think something that has changed is the fact that I really value the time when I can wind down and relax, because with so much going on I’m always on the go and worrying about my next due date.

7. What is the future hold for renewable energy, in your opinion?

I think we are already seeing a huge increase in the interest in renewable energy and alternative energy sources. As global warming and the greenhouse effect closes in on us, we will be obliged to look around to harvest natural energy, whether it be from heat, sun, water, wind etc. It holds a lot of potential, but our technologies for harvesting the energy efficiently are still developing. If my flashlight can eliminate even a fraction of batteries from the city dumps, I will have achieved my aim.

8. What does the future hold for Ann Makosinki?

I hope to commercialize the flashlight and make it available to children in the world who need light the most. Beyond that, I hope to get into college and make my little contribution towards a cleaner and better world to come.

She hopes to commercialize the flashlight? I for one can’t believe that she hasn’t been approached by every company from GE to Applied Solar. But it is great to know that young minds are coming up with breakthroughs that could be making a very real difference in the world of tomorrow. I, for one, consider to be right up there with the Darfur Stove and Quetsol solar-powered lights.

And be sure to check out the video of Ann’s speech at TEDx RenfewCollingwood which took place in October 2013, entitled “Be the Source”:


And here is her guest spot on Jimmy Fallon Live, as part of GE’s “Fallonventions”, from this past February:

The 3D Printing Revolution

3D-printing1From the way people have been going on about 3D printing in the past few months, you’d think it was some kind of fad or something! But of course, there’s a reason for that. Far from being a simple prescriptive technology that requires us all to update our software or buy the latest version in order to “stay current”, 3D printing is ushering in a revolution that will literally change the world.

From design models and manufactured products, the range of possibilities is now venturing into printed food and even artificial organs. The potential for growth is undeniable, and the pace at which progress is happening is astounding. And on one of my usual jaunts through the tech journals and video-sharing websites, I found a few more examples of the latest applications.

ord_bot_2_2_display_mediumFirst up is this story from Mashable, a social media news source, that discusses NYU student Marko Manriquez’s new invention: the BurritoBot. Essentially a 3D food printer that uses tortillas, salsa, guacamole and other quintessential ingredients, Manriquez’s built this machine for his master’s thesis using open-source hardware – including the ORD bot, a 3D printing mechanical platform (pictured above).

The result is a food printer that an tailor-make Burritos and other Mexican delights, giving users the ability to specify which ingredients they want, in which proportion, and all through an app on their smartphone. No demos available online as of yet, but Mashable provides a pretty good breakdown on how it works, as well as Manrquez’s inspiration and intent behind its creation:


Next up, there’s Cornell University’s food printer that allows users to created desserts. In this CNN video, Chef David Arnold at the French Culinary Institute shows off the printer by creating a chocolate cake, layer by layer, dough and icing. A grad student from Cornell’s Computational Synthesis Lab was on hand to explain that their design is also open-source, with the blueprints and technical design made available online so anyone can build their own.

As Chef Arnold explained, his kitchen has been using the printer to work with ingredients ranging from cookie dough, to icing to masa – the corn meal tortillas are made from. It also allows for a degree of accuracy that many may not possess, while still offering plenty of opportunities to be creative. “The only real limitation now is that the product has to be able to go through a syringe,” he said. “Other than that, skies the limit.”


But even more exciting for some are the opportunities that are now being explored using metals. Using metal powder and an electron beam to form manufactured components, this type of “additive manufacturing” is capable of turning out parts that are amazingly complex, far more so than anything created through the machining-process.

In this next video, the crew from CNNMoney travel to the Oakridge National Lab in Tenessee to speak to the Automation, Manufacturing and Robotics Group. This government-funded lab specializes in making parts that are basically “structures within structures”, the kind of things that are used in advanced prosthetic limbs, machinery, and robots. As they claim, this sort of manufacturing is made possible thanks to the new generation of 3D ABS and metal printers.

Oakridge_natlabWhat’s more, this new process is far more efficient. Compared to old fashioned forms of machining, it consumes less energy and generates far less waste in terms of materials used. And the range of applications is extensive, embracing fields as divergent as robotics and construction to biomedical and aerospace. At present, the only real prohibition is the cost of the equipment itself, but that is expected to come down as 3D printing and additive manufacturers receive more market penetration.


But of course, all of this pales in comparison to the prospect of 3D printed buildings. As Behrokh Khoshnevis – a professor of Industrial & Systems Engineering at USC – explains in this last video from TEDxTalks, conventional construction methods are not only inefficient, labor intensive and dangerous, they may very well be hampering development efforts in the poorer parts of the world.

As anyone with a rudimentary knowledge of poverty and underdevelopment knows, slums and shanty-towns suffer disproportionately from the problems of crime, disease, illiteracy, and infant mortality. Unfortunately, government efforts to create housing in regions where these types of communities are common are restrained by budgets and resource shortages. With one billion people living in shanties and slum-like shelters, a new means of creating shelter needs to be found for the 21st century.

contour-craftingThe solution, according to Khoshnevis, lies in Contour Crafting and Automated Construction –  a process which can create a custom house in just 20 hours! As a proponent of Computer-Assisted Design and Computer-Assisted Manufacturing (CAD/CAM), he sees automated construction as a cost-effective and less labor resource-intensive means of creating homes for these and other people who are likely to live in unsafe, unsanitary conditions.

The technology is already in place, so any claims of that is of a “theoretical nature” are moot. What’s more, such processes are already being designed to construct settlements on the moon, incorporating robotics and 3D printing with advanced computer-assisted simulations. As such, Khoshnevis is hardly alone in advocating similar usages here on planet Earth.

The benefits, as he outlines them, are dignity, safety, and far more sanitary conditions for the inhabitants, as well as the social benefits of breaking the pathological cycle of underdevelopment. Be sure to check out his video below. It’s a bit long, but very enlightening!


Once in awhile, its good to take stock of the future and see that it’s not all creepy robots and questionable inventions. Much of the time, technological progress really does promise to make life better, and not just “more convenient”. It’s also especially good to see how it can be made to improve the lives of all people, rather than perpetuating the gap between the haves and the have nots.

Until next time, keep your heads high and your eyes to the horizon!