An interesting development happened once I got back from Europe. Apparently, there are people on the island that are very interested in astronomy, people who were surprised to learn that I also lived here. They are the Nanaimo Astronomy Society, a group of amateur astronomers and stargazers located in the town of Nanaimo – which is in the central Vancouver Island area, about a two hours drive from where I live.
As they explained to me, they have been following my writing at Universe Today for awhile, but didn’t realize I lived locally. Once they realized that, they asked if I would be willing to speak at their upcoming meeting. Needless to say I was flattered, especially when you consider that most of the UT team lives on Vancouver Island. I could only assume they didn’t know about the others. I mean, when you’re a chapter of the Beatles Fan Club, and the band lives in the same region, you don’t exactly invite Ringo to come talk, right?
Anyway, the topic will be “Colonizing Mars”, which will address all the current plans by federal space agencies, private corporations, and crowdfunded organizations to explore, settle and transform the Red Planet. Naturally, I want to throw in a bit about terraforming, since that’s kind of my thing these days!
Good news! Not long ago, I took part in a podcast with Liam Ginty – the man who created Voices From L5. This program deals with the subject of space exploration and colonization, and he decided to do a podcast all about terraforming. After coming across my series on the subject over at Universe Today, he contacted me, and we got to talking. By the time we were done, we had created an episode dedicated to the subject.
The episode is about 45 minutes long, and covers such issues as terraforming vs. space habitats, the ethics of terraforming, the challenges and benefits, and whether or not such a thing is likely to happen. If you’ve got some time, and don’t mind hearing my voice (I am still not comfortable hearing it), then check it out.
I’ve been busy over at Universe Today of late. In fact, as part of a promotional thing for my upcoming book – The Cronian Incident – I’ve been doing a series of articles about terraforming. And it’s actually kind of an interesting story, which I already touched on in a previous post. In any case, the series is now complete, with articles that cover everything from terraforming Mercury to terraforming the moons of the gas giants in the outer Solar System:
To give people the Cliff Notes version of this series, it is clear that at this point, humanity could colonize and terraform certain worlds in our Solar System. The only real questions are where could we? How could we? And why should we? To answer the first two, we could terraform Mars and Venus, since both planets are terrestrial (like Earth), both exist in our Sun’s habitable zone (like Earth), and have either abundant atmospheres or abundant sources of water we can work with. In any other case, the matter becomes impractical, except within certain contained environments (paraterraforming).
The “greening of Mars”. Credit: nationalgeographic.com
As for the third question – why should we? – that was one of the main reasons I tackled this subject. When it comes to terraforming, the questions concerning ethics and responsibility are unavoidable. And while I did my best to cover this in the course of writing the series, the real debate happened in the comments section. Again and again, people asked the following questions:
How can we live elsewhere when we can’t even take care of Earth?
Shouldn’t we take care of our problems here before we settle other worlds?
Wouldn’t those resources be better spent here?
All good (and predictable) questions. And rather than simply avoiding them or dismissing them as pedestrian, I wanted to seriously have an answer. And so I chose to reply whenever these questions, or some variation, popped up. Here’s the basics of why we should terraform other worlds in this century and the next:
1. Increased Odds of Survival: As Elon Musk is rather fond of sharing, colonizing Mars was one of the main reasons he started SpaceX (which recently made their second successful landing of the reusable Falcon 9 rocket!) His reason for establishing this colony, he claims, is to create a “backup location” for humanity. And in this, he has the support of many policy analysts and space enthusiasts. Faced with the threat of possible extinction from multiple fronts – an asteroid, ecological collapse, nuclear war, etc. – humanity would have better odds of survival if it were a multi-planet species.
Artist’s concept for a possible colony on Mars. Credit: Ville Ericsson
What’s more, having other locations around the Solar System decreases the odds of us ruining Earth. So much of why Earth’s environment is threatened has to do with the impact human populations have on it. Currently, there are over 7 billion human beings living on planet Earth, with an additional 2 to 3 billion expected by mid-century, and between 10 and12 by the 2100. But it’s not just the number of people that matters. In addition to every human being constituting a mouth to feed, they are also a pair of hands that need to given something productive to do (lest they turn to something destructive).
Every human also requires an education, a place to live, and basic health and sanitation services to make sure they do not die prematurely. And providing for all of this requires space and a great deal of resources. As it stands, it is becoming more and more difficult to provide for those we have, and our ability to do so is dwindling (i.e. thanks to Climate Change). If we intend to survive as a species, we not only need new venues to expand to, we need other resource bases to ensure that our people can be fed, clothed, housed, and employed.
So simply put, creating permanent settlements on the Moon, Mars, and elsewhere in the Solar System could ensure that humanity survives, especially if (or when) our efforts to save Earth from ourselves fail.
Project Nomad, a concept for the 2013 Skyscraper Competition that involved mobile factory-skyscrapers terraforming Mars. Credit: evolo.com/A.A. Sainz/J.R. Nuñez/K.T. Rial
2. Testing out Ecological and Geological Engineering Techniques:
Basically, there is no way humanity is going to be able to address Climate Change in this century if we do not get creative and start relying on techniques like carbon capture, carbon sequestration, solar shades, and artificially triggered global dimming and fungal blooms. The problem is, any or all of these techniques need to be tested in order to ensure that the results are just right. Altering our environment would not only threaten to disrupt systems human being depend upon for their livelihood, it could also threaten the lives of many people.
Such is the threat Climate Change poses, so we want to make sure the ways in which we address it helps the environment instead of screwing it up further. The best way to do that is to have testing grounds where we can try out these techniques, and where a misstep won’t result in the loss of innocent lives or billions in damages. Ergo, testing our methods on Mars and Venus will give us a chance to measure their effectiveness, while avoiding any of the political barriers and potential hazards using them on Earth would present.
3. Mars and Venus are Perfect Testing Grounds: Astronomers have been aware for some time that Mars and Venus are similar to Earth in many ways. As previously mentioned, they are both terrestrial planets that are located in our Sun’s habitable zone. But of course, they are also different in several key respects. Whereas Mars’ atmosphere is very thin, it has no magnetosphere, and its surface is extremely cold and dry, Venus has an atmosphere that it extremely dense, hot enough to melt lead, and where sulfuric acid rains are common.
Artist’s impression of a atmospheric generator on Mars. Credit: futurism.com
The reasons for this? Mars sits at the outer edge of the Sun’s habitable zone and receives less warmth. Combined with its eccentric orbit – and a lack of a protective magnetosphere that caused it to lose its atmosphere billions of years ago – this is what has led to it becoming the very cold and dry planet we are familiar with. Venus, sitting on the inner edge of the Sun’s habitable zone, suffered a runaway Greenhouse Effect early in its history, which caused it to become the extremely hot and hellish world it is today.
Terraforming Mars would therefore require that we thicken the atmosphere and warm it up. This means triggering a Greenhouse Effect by pumping lots of CO2 and nitrogen (probably in the form of ammonia) into its atmosphere and then converting them using cyanobacteria and other species of bacteria. So basically, to make Mars more Earth-like, we could build heavy industry there to pollute the hell out of the place – something we’ve been doing here on Earth for hundreds of years! – and then test out techniques designed to convert the atmosphere into something breathable. What we learn could then be applied here at home.
The same holds true for Venus. In order to terraform that world into something livable for humanity, the first challenge will be to arrest the runaway Greenhouse Effect there and convert the carbon dioxide/sulfur dioxide-rich atmosphere into one composed of nitrogen and oxygen gas. There are many ways to do this, and testing one or more of them out will yield crucial data for using similar techniques on Earth. In a nutshell, transforming Mars and Venus will help us save Earth.
Artist’s concept of a Venus cloud city – part of NASA’s High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center
4. Our Solar System has Abundant Resources: Between the Moon, Mars, Venus, Mercury, the Asteroid Belt, and the systems of Jupiter, Saturn and beyond, there are literally enough resources to last humanity indefinitely. And while we can’t hope to possess them all at once, every step in colonizing the Solar System offers us the chance to expand our resource base, conduct scientific research and exploration, add more land which we can develop and use for human settlement, and ultimately grow as a species.
To break this process down piecemeal, we must start with the Moon. By establishing a colony in its southern polar region, we could leverage the local resources to create a permanent settlement and use it as a refueling base for mission deeper into the Solar System (a move which would save billions on all future missions). Solar operations could also be built on the surface to beam energy to Earth, the Moon’s rich minerals could be mined for Earth industries, and the mining of Helium-3 could power fusion reactors all over the world.
Already, NASA is eying the Shakelton Crater as a possible location, where there is an abundance of water ice and a dome could be built over it to create a contained atmosphere. The moon’s stable lava tunnels also present a good site, since they are large enough to fit entire cities within them and would hold an atmosphere nicely. And from there, humanity could mount missions to Venus and Mars, which would in turn add their abundant supplies of minerals to our economy.
The European Space Agency’s concept for a Moon base. Credit: ESA
Mercury would also present a major opportunity for mining and solar operations. And like the Moon, colonies could be built in the permanently shaded regions around the northern and southern polar regions (where there are abundant supplies of water ice) and in underground stable lava tubes. The Asteroid Belt literally has enough minerals and ices to keep humanity supplied indefinitely (hence the interest in asteroid prospecting of late), and the outer Solar System has enough ice, volatiles, and organic compounds to do the same.
In short, step by step, the colonization and/or terraforming of our Solar System offers humanity the opportunity to become a post-scarcity race. While many decry the idea of our species expanding because of the greed and abuse we have demonstrated in the past (and continue to demonstrate today), much of this greed and abuse comes from the fact that our current economic models are based on scarcity. By removing that from the equation, it would be that much more difficult for human beings to hoard resources for themselves while denying their neighbor.
Faced with all of this, the question no is longer one of “why should we”, but rather “why shouldn’t we?” Why shouldn’t we establish a human presence elsewhere in the Solar System, knowing that it could not only help us to save Earth, but ensure our survival as a species for the indefinite future? This of course does not address all the challenges that remain in doing so, but it does tackle one of the biggest arguments there is against space exploration and colonization.
Still pic from Wanderers, by Erik Wernquist
As for the rest? Well, I’m sure we’ll tackle those questions, and then some, when the time comes. In the meantime, I encourage everyone to keep looking up at the stars and saying the question, “why not?”
As I’ve been talking about non-stop for the past few months, I got a novel in the works. As of the writing of this post, I’ve written 25 chapters and almost 50,000 words (that terrible middle part!) But what I haven’t shared yet is that some lovely websites have promised to promote it as soon as its done. This is a first for me, and something that I’m really looking forward to!
Truth is, this wouldn’t be possible were it not for the professional writing I’ve been doing for the past year and a half. And it all started a few months ago when I was busy updating an article (How Long Does It Take To Get To The Nearest Star). The article was a few years out of date at this point, and my boss wanted it expanded to include all the cool theoretical methods that have been proposed over the past few decades.
Artist’s concept of the Project Daedalus spacecraft, with a Saturn V rocket standing next to it for scale. Credit: Adrian Mann
While researching the topic to find out how long it would take a nuclear-powered spaceship to make the journey, I stumbled across Futurism.com and saw that they had reposted the old version of the article. I also noticed that they had reposted a few articles done by little ol’ me, which include the very first article I wrote back in Oct of 2014 (about hibernation technologies for a trip to Mars).
While telling them that a newer version would be coming out, the manager and I got to talking. I asked them if they would appreciate some articles on terraforming, and happened to mentioned that I was writing a book where that was a major theme. To my surprise, they expressed interest in both things, and asked if they could interview me when the book was done.
Naturally, I was worried they thought I was someone who was… you know, a big deal! I was sure to point out that this book was fiction and not some professional treatise. I’m not exactly Mike Brown or Neil DeGrasse Tyson here. But they said it was cool! Then I pointed out that I didn’t have a publisher lined up, and it might very well be indie published in the end. They said that this was cool too!
Color-enhanced map of Mercury. Credit: NASA/JPL
Suffice it to say, I was surprised and flattered. And after talking this over with my boss (I wanted his permission to write content that would be put on another site, he said that was cool!), he told me that Universe Today would be promoting the hell out of it too. I was honored. At no point did I ask or expect that the people I work for would be promoting something I wrote on my own time. But of course, I was sure to let them know that the work I was doing for them is what inspired it.
Were it not for all the research I had been doing about the Solar System and articles I was writing about its various planets, the story would not exist. It actually all started with the article I wrote on Mercury, in fact. Learning about its extremes in temperature, its richness in minerals, its very slow rotation, and its icy poles all made me think that a mining colony would be possible there someday. Especially if it were a penal colony!
Bottom line, when the book is finished, two prominent websites are going to be making a big deal out of it. How cool is that?
And just in case anyone is interested, those terraforming article are now finished and up at Universe Today. There are three in the series now, starting with a rundown of the topic, and ones on how it could be done on Venus and Mars. Next up, the Moon, followed by Mercury and the Outer Solar System. Feel free to leave comments too, especially constructive ones. 🙂
Hey folks! In recent months, I’ve hit two milestones in the writing of my novel. The first occurred weeks ago, when I chose to change the title. The second, and more important, is that book is now half done. Yes, with part II of the story complete, and approximately 40,000 words down on paper, the novel is now halfway towards completion. That means this book is not only out of the crib and walking, its off and running. Now it just needs to avoid any nasty spills and it will be in business!
But first, let me explain why I renamed it. Basically, this book is about an “incident” that takes place on one of Saturn’s moons (Titan). Here, a high-profile figure connected to terraforming interests on Mars goes missing. The investigation into this mysterious disappearance takes the investigator (Jeremiah Ward) from Mercury, to Mars, and then to Jupiter’s moon of Callisto before moving on to Titan. Since the focus of the investigation is on the these two moons, I decided to use the name “Jovian”, since this term applies to any moon that orbits a gas giant.
Jupiter’s larger (Galilean) moons, from left to right – Callisto, Europa, Io and Ganymede. Credit: NASA
But eventually, I found this name to be problematic. For one, the larger moons that orbit Jupiter – Io, Europa, Ganymede and Callisto – are often referred to as “The Jovian Moons” (derived from Jove, the archaic name for Jupiter). While they are more properly known as “The Galilean Moons” (after their discoverer, Galileo), the name is applicable here more than with any other moon in the Solar System. Specifically, Saturn’s moons are properly called Saturnian or Cronian.
Another reason I wanted to call it the Jovian Incident was because I wanted it to be a compact volume consisting of three parts. Part I (Hermians) takes place on Mercury and shows the life of convict laborers; Part II (Martians) shows what life is like on a planet in the inner Solar System; and Part III (Jovians) covers all the action taking place in the outer Solar System and shows how people in this part of the universe live.
However, I finally realized this structure wouldn’t fly. For one, it would cause confusion to say the incident was “Jovian” when the moon where it happened on is called Cronian in the book. Second, I knew the three part structure wouldn’t fly, since it would mean Part III would likely be longer than Parts I and II combined. So I decided to add a Part IV (“Cronians”), and rename the book “The Cronian Incident”.
Saturn’s moon Titan, which figures prominently in the story. Credit: NASA
And with Part II complete and Part III underway, I have covered all the necessary exposition and background, and am now moving onto the action part of the story. I would say this is where the fun part begins. But as I am sure many would agree, once you are half done a project, completing it somehow feels more difficult. For me, starting something is the easy part. Building on that foundation is also fun. But getting it from a work-in-progress to a finished work, that’s the hard part!
So feel free to wish me luck. Also, thanks for staying abreast of my progress. For those who had a helping hand, I intend to make this book available, free of charge, once its ready. And unlike some of the thing I wrote, it should work out to a (relatively) compact 80,000 words. No tomes here!
Future City [3] by josueperez79 at deviantart.comHi again folks! I’m back with some thoughts from my most recent story project – The Jovian Incident. I know, what else is new, right? Writing can be a self-indulgent process. But if there’s one thing I’ve learned, its that sharing helps when it comes to developing a story. It helps you articulate your thinking and ideas, especially if respected peers tell you what they think (hint, hint!)
As I also learned a long time ago, any science fiction piece that deals with the distant future has to take into account how human beings in the future go about organizing themselves. In this future world, what are the political blocs, the alliances, the rivalries – the ways in which people are united and divided? Well, I gave that a lot of thought before sitting down to pen the book (which is into chapter 11 now). And this is the basic breakdown I came up with.
Extro Factions: For starters, people in the future I am envisioning are tentatively divided into those that live in the inner and outer Solar Systems. But that geographic divide is merely representative of a much bigger issue that divides humanity. Whereas the people living on Earth, Mars and Venus largely fall into the category of “Extro” (i.e. Extropian, people who embrace the transhuman ethic) people in the outer Solar System live simpler, less augmented and enhanced lives (“Retro”).
But within this crude division between people who believe in going beyond their biological limitations and those who believe in respecting them, there are plenty of different social, political and ideological groups to be found. Here’s a rundown on them, starting with the Extro factions…
The Formists: Founded by Piter Chandrasekhar, one of the first colonists of Mars, the Formists are a faction dedicated to the full-scale terraforming of the Red Planet. The purpose of this, obviously, is to allow for full-scale colonization, which is something that remains impossible at this point in the story. All inhabitants on Mars lived in sealed domes, all transit takes place in pressurized tubes or on flyers, and anyone venturing out onto the surface is forced to wear a pressure suit with life-support systems.
Mars Terraformed by Daein Ballard
Currently, the Formist faction is run by Emile Chandrasekhar, Piter’s grandson. And for the past few decades, they have been busy procuring resources from the outer Solar System to aid in the terraforming process. This includes supplies of methane, ammonia, ices, and lots and lots of comets.
However, they are also busy trying to ensure that the process will have a minimal impact on the settlements and those living within them. Altering the planet’s atmosphere will definitely have a significant impact on the landscape in the short-term, such as sublimating all the water ice in the Martian soil and in the polar caps. Once that water begins to flow, much of the surface will find itself being swallowed up by newly-created oceans. So naturally, the Formists must proceed slowly, and make sure all settlements on Mars agree to their plans.
While the Formist faction is largely centered on Mars, they have counterparts on Venus as well – known as The Graces (after the children of Aphrodite). Here, the process is significantly different, and involves converting the existing atmosphere rather than increasing its density. But the goal is the same: to one day make Venus a living, breathing world human beings can set foot on.
The Dysonists: Among the Extros, there are also those who believe humanity’s future lies not in the stars or in the terraforming the Solar System’s planets, but in the space that surrounds our Sun. They are known as the Dysonists, a faction that is intent on building a massive swarm of structures in the inner Solar System. For some, this calls for a series of rings which house the inhabitants on their inner surface and provide gravity through endless rotation.
This artist’s concept of a Dyson sphere is via SentientDevelopments.com
For other, more ambitious Dysonists, the plan involves massive swarms of computronium that will contain a sea of uploaded personalities living in simulated environments. Both the swarms and the powerful bandwidth that connects them will draw energy from the Sun’s rays. These individuals consider themselves to be the more puritan of Dysonists, and believe those who advocate buildings rings structures are more properly known as Nivenists.
The process of converting all the “dumb matter” in the Solar System into smart matter has already begun, but in limited form. Within a few generations, it is believed that the Sun will be surrounded by a “Torus” of uploaded minds that will live on while countless generations come and go. Dysonists and their enclaves can be found on Near-Earth Asteroids, in the Main Asteroid Belt, and with committed supporters living on Venus, Mars, Earth, the Moon, and Ceres.
The Habitationists: Inspired by Gerard K. O’Neill, the inventor of the O’Neill Cylinder, the Habitationists began as an architects dream that quickly expanded to fill all of known space. In the 21st century, Earthers looking to escape the growing population crisis began migrating to space. But rather than looking to live on distant worlds or the Moon, where the environment was harsh and the gravity limited, they decided to set up shop in orbit. Here, supplies could be shipped regularly, thanks to the advent of commercial aerospace, and gravity could be simulated at a full g thanks to rotating toruses.
By the mid 22nd century, Low Earth Orbit (LEO) Habs had become all the rage and the skies became somewhat saturated. The existence of Earth’s space elevator (The Spindle) only made deploying and supplying these Habs easier, and a steady drop in the costs of manufacturing and deploying them only made them more popular. As such, Terran architect Hassan Sarawak, who had designed many of the original habitats in space, began to busy himself designing a new series of Habs that would allow human beings to live in space anywhere in the Solar System.
Artistic impression of the inside of an O’Neil Cylinder. Lightfarm Studios
By the end of the 22nd century, when the story takes place, large cylinders exist in several key places in the Solar System. Most are named in honor of either their founders, those who articulated the concept of space habitats, or those who believed in the dream of colonizing space itself (and not just other planets and moons). These places are thusly named O’Neil’s Reach, Clarkestown, Sawarakand, and New Standford.
The Seedlings: As the name would suggest, the Seedlings are those intrepid Extropians who believe humanity should “seed” the galaxy with humanity, spreading to all solar systems that have confirmed exoplanets and building settlements there. But in a slight twist, they believe that this process should be done using the latest in nanotechnology and space penetrators, not slow interstellar ships ferrying human colonist and terraformers.
To the Seedlings, who can be found throughout the inner Solar System, and on some of its most distant moons, the idea is simple. Load up a tiny projectile-ship with billions of nanobots designed to slowly convert a planet’s climate, then fire it on a trajectory that will take it to an exoplanet many generations from now. Then, prepare a ship with colonists, send it on its merry way into space, and by the time they reach the distant world, it will be fully prepared for their arrival.
At this point in the story, the Seedlings first few missions are still in the planning stages. They’ve got the technology, they’ve got the know-how, and they know where the right candidate planets are located. All they need to do know is test out their machines and make sure the process works, so that they won’t be sending their colonists into a deathtrap.
Sidenote: this idea is actually one I explored in a short story I am trying to get published. If all goes well, I am the short story and this full-length idea can be connected as part of a singular narrative.
Retro Factions: And now we come to the people who live predominantly in the outer Solar System, the folks who found life on Earth and the inner worlds unlivable thanks to its breakneck pace and the fact that life was becoming far too complicated. These are the people whom – for religious, personal, or moral reasons – chose to live on the frontier worlds in order to ensure something other than humanity’s survival as a species. For these people, it was about preserving humanity’s soul.
Organics: In the mid to late 21st century, as biotech and cybernetics became an increasingly prevalent part of society, a divide began to emerge between people who enhanced their biology and neurology and those who did not. While the former were in the minority for the first few decades, by the latter half of the 21st century, more and more people began to become, in essence, “transhuman” – (i.e. more than human).
Cyber Girl by Fausto De Martini
At the same time, fears and concerns began to emerge that humanity was forsaking the very things that made it human. With lives becoming artificially prolonged, human parts being swapped for bionic or biomimetic implants, and brains becoming enhanced with neural implants and “looms”, humanity seemed on course to becoming post-human (i.e. not human at all).
And while the concerns were justified, few who could afford such enhancements seemed to be willing to forsake the convenience and necessity they represented. In a world where they conferred advantage over the unenhanced, choosing not to augment one’s body and mind seemed foolish. But between those who could not afford to, those who were forbidden to, and those who chose not to, eventually a new underclass emerged – known as “Organics”.
Today’s organics, who live predominantly in the outer Solar System or isolated pockets in the inner worlds, are the descendants of these people. They live a simpler life, eschewing most of the current technology in favor for a more holistic existence, depending on various levels of technology to maintain a certain balance.
Fundies: Naturally, human beings in the late 22nd century still have their faiths and creeds. Despite what some said in previous centuries, mankind did not outgrow the need for religion as it began to explore space and colonizing new worlds. And when the Singularity took place in the mid 21st century, and life became increasingly complex, enhanced, and technologically-dominated, the world’s religiously-devout began to feel paradoxical. On the one hand, religion seemed to be getting more unpopular and obsolete; but at the same time, more rare and precious.
To be fair, there was a time when it seemed as though the prediction of a religion-less humanity might come true. In the early to mid 21st century, organized religion was in a noticeable state of decline. Religious institutions found it harder and harder to adapt to the times, and the world’s devout appeared to be getting increasingly radicalized. However, in and around all of these observable trends, there were countless people who clung to their faith and their humanity because they feared where the future was taking them.
In the current era, the outer Solar System has become a haven for many sects and religious organizations that felt the Inner Worlds were too intolerant of their beliefs. While there will always be people who embrace one sort of faith or another on all worlds – for instance, billions of Extros identify as Gnosi or Monist – the majority of devout Kristos, Sindhus, Mahavadans, Mahomets, and Judahs now call the worlds of Ganymede, Callisto, Europa, Titan, Rhea, Iapetus, Dione, Tethys, Titania, Oberon, Ariel and Umbriel home.
The vast majority of these people want to live in peace. But for some, the encroachment of the Inner Worlds into the life and economies of their moons is something that must be stopped. They believe, as many do, that sooner or later, the Extro factions will try to overtake these worlds as well, and that they will either be forced to move farther out, colonizing the moons of Neptune and the Kuiper Belt, or find homes in new star systems entirely. As such, some are joining causes that are dedicated to pushing back against this intrusion…
Chauvians (Independents): Many in the past also thought that nationalism, that sense of pride that is as divisive as it is unifying, would also have disappeared by this point in time. And while humanity did begin to celebrate a newfound sense of unity by the late 21st century, the colonizing of new worlds had the effect of creating new identities that were bound to a specific space and place. And given the divisive political climate that exists in the late 22nd century, it was only natural that many people in the Outer Worlds began preaching a form of independent nationalism in the hopes of rallying their people.
Collectively, such people are known as “Chauvians“, a slight bastardization of the word “Jovian” (which applies to inhabitants of any of the outer Solar System’s moons). But to others, they are known simply as Independents, people striving to ensure their worlds remain free of external control. And to those belonging to these factions, their worlds and their people are endangered and something must be done to stop the intrusion of Extros into the outer Solar System. For the most part, their methods are passive, informative, and strictly political. But for others, extra-legal means, even violent means, are seen as necessary.
Examples include the Children of Jove and the Aquilan Front, which are native to the Galilean moons of Jupiter. On the Cronian moons, the Centimanes are the main front agitating for action against the Extros. And on the Uranian moons, the organizations known as The Furies and the Sky Children are the forces to be reckoned with. Whereas the more-moderate of these factions are suspected of being behind numerous protests, riots, and organized strikes, the radicals are believed to be behind the disappearance of several Extro citizens who went missing in the Outer Worlds. In time, it is believed that a confrontation will occur between these groups and the local authorities, with everyone else being caught in the middle.
And those are the relevant players in this story I’m working out. Hope you like them, because a few come into play in the first story and the rest I think could become central to the plots of any future works in the same universe. Let me know what you think! 🙂
A friend and mentor once told me that you shouldn’t be too worried about people stealing your ideas. To paraphrase what he said, you’ll have thousands of ideas, and no one can steal your work unless you’re careless. Those words rung true to me, mainly because I have far too many ideas, and not nearly enough of them are developed. Case in point, I’ve got four projects in the works, and none of them are near to completion.
And yet, I find myself once again adding an idea to the mix. It came to me over the course of the last few months while working for Universe Today and trying to refine my ideas on science fiction. Basically, I have been thinking for some time that any piece written by me should focus on the paradoxical issues of Climate Change and technological change, and how these will play out to shape our near, not-too-distant, and distant future.
And then an idea started forming. I would have filed it in the “not now, maybe later” column, but I think it might be something that could really work. And given the way I’ve been bugging people constantly over the past few months with it, asking their opinions, soliciting thoughts on the first few chapters, I clearly have become emotionally invested in it. So I thought perhaps it was time to commit to it, as I always do, by sharing the idea, and thus ensuring that there’s a record of it somewhere so no one can steal it! 😉
The Cronian Incident: It is the late 22nd century, and humanity has grown to colonize almost every corner of the Solar System. Earth is now recovering from the worst aspects of “The Anthropocene”. Temperatures are dropping, species extinctions have stopped and are being reversed, and the population is stable, with over 13 billion people living in its cities, arcologies, and orbital habs. Over 1 million people live on the Moon, in cities built in lava tubes beneath the surface.
Mars and Venus are also home to humanity. On Mars, the Martian people live in domes that crisscross the surface, a Space Elevator brings people to and from the planet, and a constant flow of shipping to and from the Asteroid Belt and Solar System keeps the place busy. On Venus, the Cythereans live in cities that float atop the planet’s extremely dense atmosphere, harnessing carbon from the clouds to create graphene and diamond-based materials.
On all these worlds, humanity exists as a series of factions that know no national boundaries, and are collectively referred to as “Extros” – short for Extoprian. Thanks to over a century of runaway technological progress, diseases and disabilities have been eliminated, implants and embedded machinery allow for constant connectivity to the Nexus (future version of the Internet), and all vestiges of life are assisted by sentient programs and algorithms of various complexity.
Meanwhile, the Outer Solar System hosts an entirely different mix of people. On the moons of Jupiter (the Jovians), Saturn (the Cronians), and Uranus (the Uranians), people enjoy a simpler existence. While they have access to plenty of advanced technology, many types of nanotech, biotech, and embeddadles are eschewed in favor of organic living, portable machines, and non-sentient computing.
Despite the fact that the Jovians, Cronians and Uranians are made up of countless peoples and factions, collectively, they are often referred to as “Retros” – a pejorative used to refer to their regressive lifestyle. But whether it is for religious reasons, personal reasons, or because they fear that Earth and the Inner Colonies have become consumed by runaway change and progress, the people who call these moons home prefer to maintain a balance.
Whereas these colonies were established in the latter half of the 21st century to ensure that humanity would have backup locations in case Earth died one day, by the 22nd century, they became dedicated to the preservation of something else. In this day in age, it is no longer about ensuring humanity’s physical survival, but rather preserving its spirit or a certain way of life.
The Plot: Enter into this universe Jeremiah Ward, a disgraced former-detective who developed a drug problem as a result of his stressful work and the pace of life in the Inner Colonies. After an incident where two witnesses were murdered – which was attributed to negligence on his part – he is given a hefty prison sentence, which he decided to serve out in a penal colony on Mercury.
On this planet, where the day-side is hellish and unlivable, and the night-side is freezing and unlivable, mining crews live in the northern crater known as Prokofiev. Given the planet’s slow rotation (which takes 58 days to rotate once on its axis), mining crews go out to the night-side, spend days harvesting ore, and then transport it back to Prokofiev, where it then processed and fired off into space.
After a few years of this miserable existence, Ward is approached by a faction from Mars. Known as the Formists, this well-connected and powerful faction has a very strong standing on Mars. And they have a problem. One of their prospectors, who was traveling to the Outer Colonies to investigate their resource extraction operations, has gone missing. Worse yet, this prospector apparently had “sensitive materials” on his person that the Formists don’t want falling into the wrong hands.
These materials, they claim, detail a plan to convert Mars into a livable environment over the next few generations. Consistent with the Formists long term plan to terraform Mars into a new Earth, they are hoping to expand their contracts with the Outer Colonies for the vast amounts of resources they will need to do so. If these plans are made public, they worry that one of the rival factions – the Dysonists, the Habitationists, Settlers or Seedlings – will try to take advantage.
In exchange for finding their colleague and obtaining this information, Ward will have his sentence reduced to time served. He is told that his experience as an investigator makes him well-suited to the task, as well as the contacts he made in the Outer Colonies during his many years of service. But of course, he knows the real reason why he was selected: as a convict, he will be well-motivated to get the job done, and will be less likely to ask questions.
His journey takes him from Mars, to Jupiter’s moons of Ganymede and Callisto, and eventually to Titan – Saturn’s largest moon and the last stop of the prospector before he disappeared. When he finally comes to the end of his investigation, what he finds is far more than he bargained for. Rather than simply being a case of kidnapping or a hate-crime perpetrated by angry Retros, the prospector’s disappearance is part of a conspiracy that goes right to the heart of the Formist’s agenda.
More than that, it goes right to the heart of an ongoing struggle, one which humanity has been preoccupied with for over a century. For in the end, the issue of humanity’s long-term survival has not been settled. And the solution to this problem just might mean sacrificing the few to save the many. In the end, Ward will be faced with a terrible decision: expose the agenda and spend the rest of his life on the run, or complete his mission and let things fall where they may?
***Of course, I can’t say what the big “conspiracy” is, for that would be spoilers galore! But suffice it to say, I have that worked out and its where the story gets particularly detailed, and brings up a lot of the intricacies of terraforming and space colonization.***
So that’s the idea. How does it sound? I’m five chapters in and quite hopeful that it will turn out to be something “magnum opus-y”.
As if it weren’t bad enough that they are replacing workers here on Earth, now they are being designed to replace us in space! At least, that’s the general idea behind Google and NASA’s collaborative effort to make SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites). As the name suggests, these robots are spherical, floating machines that use small CO2 thrusters to move about and performing chores usually done by astronauts.
Earlier this month, NASA announced it’s plan to launch some SPHERES aboard an unmanned Cygnus spacecraft to the International Space Station to begin testing. That launch took place on July 11th, and the testing has since begun. Powered by Tango, Google’s prototype smartphone that comes with 3D sensors that map the environment around them, the three satellites were used to perform routine tasks.
NASA has sent SPHERES to the ISS before, but all they could really do was move around using their small CO2 thruster. With the addition of a Tango “brain” though, the hope is that the robots will actually be able to assist astronauts on some tasks, or even completely carry out some mundane chores. In addition, the mission is to prepare the robots for long-term use and harmonized them to the ISS’ environment.
This will consist of the ISS astronauts testing SPHERES ability to fly around and dock themselves to recharge (since their batteries only last 90 minutes), and use the Tango phones to map the Space Station three-dimensionally. This data will be fed into the robots so they have a baseline for their flight patterns. The smartphones will be attached to the robots for future imaging tasks, and they will help with mathematical calculations and transmitting a Wi-Fi signal.
In true science fiction fashion, the SPHERES project began in 2000 after MIT professor David W. Miller was inspired by the “Star Wars” scene where Luke Skywalker is being trained in handling a lightsaber by a small flying robot. Miller asked his students to create a similar robot for the aerospace Industry. Their creations were then sent to the ISS in 2006, where they have been ever since.
As these early SPHERES aren’t equipped with tools, they will mostly just fly around the ISS, testing out their software. The eventual goal is to have a fleet of these robots flying around in formation, fixing things, docking with and moving things about, and autonomously looking for misplaced items. If SPHERES can also perform EVAs (extra-vehicular activity, space walks), then the risk of being an astronaut would be significantly reduced.
In recent years there has been a marked shift towards the use of off-the-shelf hardware in space (and military) applications. This is partly due to tighter budgets, and partly because modern technology has become pretty damn sophisticated. As Chris Provencher, SPHERES project manager, said in an interview with Reuters:
We wanted to add communication, a camera, increase the processing capability, accelerometers and other sensors [to the SPHERES]. As we were scratching our heads thinking about what to do, we realized the answer was in our hands. Let’s just use smartphones.
The SPHERES system is currently planned to be in use on the ISS until at least 2017. Combined with NASA’s Robonaut, there are some fears that this is the beginning of a trend where astronauts are replaced entirely by robots. But considering how long it would take to visit a nearby star, maybe that’s not such a bad thing. At least until all of the necessary terraforming have been carried out in advance of the settlers.
So perhaps robots will only be used to do the heavy lifting, or the work that is too dull, dangerous or dirty for regular astronauts – just like drones. Hopefully, they won’t be militarized though. We all saw how that went! And be sure to check out this video of SPHERES being upgraded with Project Tango, courtesy of Google’s Advanced Technology and Projects group (ATAP):
Billions of years ago when the Red Planet was young, it appears to have had a thick atmosphere that was warm enough to support oceans of liquid water, and perhaps even life. Thanks to past and ongoing research conducted by the Spirit, Opportunity and Curiosity rovers, NASA scientists are certain that Mars once boasted conditions that would have supported life.
To dramatize these discoveries, NASA’s Goddard Space Flight Center has created a video representation of what the environment might have looked like billions of years ago. The artist’s concept opens with Mars appearing as a warm, wet place, and then transitioning to the climate that we know today. As the atmosphere gradually disappears, it changes from the Earthlike blue to the dusty pink and tan hues of Mars today.
As the description reads on NASA Goddard’s Youtube page:
The animation shows how the surface of Mars might have appeared during this ancient clement period, beginning with a flyover of a Martian lake. The artist’s concept is based on evidence that Mars was once very different. Rapidly moving clouds suggest the passage of time, and the shift from a warm and wet to a cold and dry climate is shown as the animation progresses.
By the end, Mars has transformed to the acrid environment of 2013 – all “dusty pink and tan hues”. One day, NASA believes it may be possible to bring the environment back from this fate. Though its a mere theory at this point, terraforming could transform Mars back into a warm, wet, and life-sustaining planet once more. Enjoy the clip!
Hey all! Hope this holidays season finds you warm, cozy, and surrounded by loved ones. And I thought I might take this opportunity to talk about an idea I’ve been working on. While I’m still searching for a proper title, the one I’ve got right now is Seedlings. This represents an idea which has been germinated in my mind for some time, ever since I saw a comprehensive map of the Solar System and learned just how many potentially habitable worlds there are out there.
Whenever we talk of colonization, planting the seed (you see where the title comes from now, yes?) of humanity on distant worlds, we tend to think of exoplanets. In other words, we generally predict that humanity will live on worlds beyond our Solar System, if and when such things ever become reality. Sure, allowances are made for Mars, and maybe Ganymede, in these scenarios, but we don’t seem to think of all the other moons we have in our Solar System.
For instance, did you know that in addition to our system’s 11 planets and planetoids, there are 166 moons in our Solar System, the majority of which (66) orbit Jupiter? And granted, while many are tiny little balls of rock that few people would ever want to live on, by my count, that still leaves 12 candidates for living. Especially when you consider that most have their own sources of water, even if it is in solid form.
And that’s where I began with the premise for Seedlings. The way I see it, in the distant future, humanity would expand to fill every corner of the Solar System before moving on to other stars. And in true human fashion, we would become divided along various geographic and ideological lines. In my story, its people’s attitudes towards technology that are central to this divide, with people falling into either the Seedling or Chartrist category.
The Seedlings inhabit the Inner Solar System and are dedicated to embracing the accelerating nature of technology. As experts in nanotech and biotech, they establish new colonies by planting Seeds, tiny cultures of microscopic, programmed bacteria that convert the landscape into whatever they wish. Having converted Venus, Mars, and the Jovian satellites into livable worlds, they now enjoy an extremely advanced and high standard of living.
The Chartrists, on the other hand, are people committed to limiting the invasive and prescriptive nature technology has over our lives. They were formed at some point in the 21st century, when the Technological Singularity loomed, and signed a Charter whereby they swore not to embrace augmentation and nanotechnology beyond a certain point. While still technically advanced, they are limited compared to their Seedling cousins.
With life on Earth, Mars and Venus (colonized at this time) becoming increasingly complicated, the Chartrists began colonizing in the outer Solar System. Though they colonized around Jupiter, the Jovians eventualy became Seedling territory, leaving just the Saturnalian and Uranian moons for the Chartrists to colonize, with a small string of neutral planets lying in between.
While no open conflicts have ever taken place between the two sides, a sort of detente has settled in after many generations. The Solar System is now glutted by humans, and new frontiers are needed for expansion. Whereas the Seedlings have been sending missions to all suns within 20 light-years from Sol, many are looking to the Outer Solar System as a possible venue for expansion.
At the same time, the Chartrists see the Seedling expansion as a terrible threat to their ongoing way of life, and some are planning for an eventual conflict. How will this all play out? Well, I can tell you it will involve a lot of action and some serious social commentary! Anyway, here is the breakdown of the Solar Colonies, who owns them, and what they are dedicated to:
Inner Solar Colonies: The home of the Seedlings, the most advanced and heavily populated worlds in the Solar System. Life here is characterized by rapid progress and augmentation through nanotechnology and biotechnology. Socially, they are ruled by a system of distributed power, or democratic anarchy, where all citizens are merged into the decision making process through neural networking.
Mercury: source of energy for the entire inner solar system Venus: major agricultural center, leader in biomaterial construction Earth: birthplace of humanity, administrative center Mars: major population center, transit hub between inner colonies and Middle worlds
Middle Worlds: A loose organization of worlds beyond Mars, including the Jovian and Saturnalian satellites. Those closest to the Sun are affiliated with the Seedlings, the outer ones the Chartrists, and with some undeclared in the middle. Life on these worlds is mixed, with the Jovian satellites boasting advanced technology, augmentation, and major industries supplying the Inner Colonies. The Saturnalian worlds are divided, with the neutral planets boasting a high level of technical advancement and servicing people on all sides. The two Chartrist moons are characterized by more traditional settlements, with thriving industry and a commitment to simpler living.
Ceres: commercial nexus of the Asteroid Belt, source of materials for solar system (S) Europa: oceanic planet, major resort and luxury living locale (S) Ganymede: terraforming operation, agricultural world (S) Io: major source of energy for the Middle World (N) Calisto: mining operations, ice, water, minerals (N) Titan: major population center, transit point to inner colonies (N) Tethys: oceanic world, shallow seas, major tourist destination (N) Dione: major mining colony to outer colonies (C) Rhea: agricultural center for outer colonies (C)
Outer Solar Colonies: The Neptunian moons of the outer Solar System are exclusively populated by Chartrist populations, people committed to a simpler way of life and dedicated to ensuring that augmentation and rapid progress are limited. Settlements on these worlds boast a fair degree of technical advancement, but are significantly outmatched by the Seedlings. They also boast a fair degree of industry and remain tied to the Inner and Middle Worlds through the export of raw materials and the import of technical devices.
Miranda: small ice planet, source of water (C) Ariel: agricultural world, small biomaterial industry and carbon manufacturing (C) Umbriel: agricultural world, small biomaterial industry and carbon manufacturing (C) Titania: agricultural world, small biomaterial industry and carbon manufacturing (C) Oberon: agricultural world, small biomaterial industry and carbon manufacturing (C) Triton: source of elemental nitrogen, water, chaotic landscape (C)